Modeling box - jenkins applied a prediction of wind speed in the regions of the brazilian northeast for the fins of wind generation

Authors

DOI:

https://doi.org/10.5902/2179460X29785

Keywords:

Time series, ARIMA, Software R

Abstract

In the present work, a study was carried out to predict monthly average wind speed in regions of the Brazilian Northeast. For this purpose, the Box - Jenkins modeling methodology was applied to the 10 m high wind speed data from January 2010 to December 2013. The forecast in all study locations was for the year 2014 through of the SARIMA model, which predominated in practically all regions, that is, an indication that the ideal forecast model must necessarily be introduced to the seasonal component. The prediction was efficient in some regions, for example, in Aracaju it was possible to find a MAPE error of 4.66%. In the localities of Aracaju and Salvador it is possible to identify that the predicted series tend to have similar behavior to the observed series regarding the similarity of maximum and minimum wind speed. This work could be used as a wind speed prediction tool to study and advance wind generation in several regions, providing decision makers with local wind exploitation, since it will be possible to estimate the wind regime in the future.

Downloads

Download data is not yet available.

Author Biographies

Henrique do Nascimento Camelo, Universidade Federal do Rio Grande do Norte (UFRN) / Doutorando

Doutorando em Ciências Climáticas da Universidade Federal do Rio Grande do Norte (UFRN). Possui mestrado em Ciências Físicas Aplicadas pela Universidade Estadual do Ceará (2007). Tem experiência nas áreas de Ensino de Física, Física da Atmosfera e Energias Renováveis. Atualmente é professor efetivo do Curso de Física do Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE), campus Acaraú.

Paulo Sérgio Lucio, Universidade Federal do Rio Grande do Norte (UFRN) / Docente

Graduação em Matemática pela Universidade Federal do Espírito Santo (1987), Mestrado em Estatística pela Universidade Estadual de Campinas (1991) e Doutorado em Geofísica pelo "Institut de Physique du Globe de Paris" (1996). Pós-Doutorado no Instituto Superior Técnico de Lisboa (2001), no Centro de Geofísica da Universidade de Évora (2002-2005) e no "Laboratoire d'Océanographie et du Climat, Expérimentation et Approches Numériques" (LOCEAN) na França (2011/2012). Professor do Departamento de Estatística da Universidade Federal de Minas Gerais (1991-2002). Assessor-Técnico (colaborador sênior) do Instituto Nacional de Meteorologia (2006). Atualmente é Professor Associado do Departamento de Ciências Atmosféricas e Climáticas da Universidade Federal do Rio Grande do Norte (UFRN), Investigador Científico do Centro de Geofísica da Universidade de Évora, Coordenador do Grupo de Pesquisas do CNPq sobre "Clima, Ambiente, Saúde e Educação", Professor do Bacharelado em Meteorologia e do Programa de Pós-graduação em Ciências Climáticas (PPgCC). Coordenador do PPgCC (2012-2016) da UFRN. 

João Bosco Verçosa Leal Junior, Universidade Estadual do Ceará (UECE) / Docente

possui Bacharelado em Física Geral e Fundamental pela Universidade Federal do Ceará (1994), Mestrado em Física pela Universidade Federal do Ceará (1998) e Doutorado em Física pela Universidade Federal do Ceará (2003). Atualmente é Professor Adjunto da Universidade Estadual do Ceará (UECE). Tem experiência nas áreas de Física e Geociências, com ênfase em Física da Atmosfera, atuando principalmente nos seguintes temas: modelagem numérica da atmosfera, micrometeorologia, microfísica de nuvens, climatologia, energia eólica e física estatística.

Paulo Cesar Marques de Carvalho, Universidade Federal do Ceará (UFC) / Docente.

Possui graduação em Engenharia Elétrica pela Universidade Federal do Ceará (1989), mestrado em Engenharia Elétrica pela Universidade Federal da Paraíba (1992) e doutorado em Engenharia Elétrica pela Universidade de Paderborn, Alemanha (1997). Atualmente é professor associado do Departamento de Engenharia Elétrica da Universidade Federal do Ceará. Tem atividades de ensino, pesquisa e extensão nos seguintes temas: geração fotovoltaica, geração eólica e biodigestores. Coordena o Laboratório de Energias Alternativas da UFC. Bolsista de produtividade em pesquisa do CNPq.

References

AKAIKE H. Information theory and an extension of the maximum likelihood principle. In: Selected Papers of Hirotugu Akaike. New York: Springer; 1998.

AQUILA G, DE OLIVEIRA PAMPLONA E, DE QUEIROZ AR, JUNIOR PR, FONSECA MN. An overview of incentive policies for the expansion of renewable energy generation in electricity power systems and the Brazilian experience. Renew. Sustain. Energy

Rev. 2017;70:1090-1098.

BOX GPE, JENKINS GM. Time Series Analysis: Forecasting and Control. 1st ed. São Francisco: Holden Day; 1978.

CADENA E, RIVERA W. Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA - ANN model. Renew. Energy 2010;35(12):2732-2738.

COCHRAN WG. Sampling techniques. 1 st ed. New York: John Wiley & Sons; 1977.

DOANE DP, SEWARD LE. Estatística aplicada à administração e econômia. 4 st ed. São Paulo: McGraw-Hill; 2014.

FAVA VL. Metodologia de Box-Jenkins para modelos univariados. In: Vasconcellos MAS, Alves D. Manual de econometria: nível intermediário. 1st ed. São Paulo: Atlas; 2000.

GOMES TLO. Utilização do Software R para Previsão de Preço do Dia Seguinte de uma Série Temporal. UNOPAR Cient. Exatas Tecnologia 2014;13(1):61-68.

GUJARATI DN. Econometria Básica. 5 st ed. São Paulo: McGraw-Hill; 2010.

KAVESSERI RG, SEETHARAMAN K. Day-ahead wind speed forecasting using f-ARIMA models. Renew. Energy 2009;34:1388–1393.

MARCHEZAN A, SOUZA AM. Previsão do preço dos principais grãos produzidos no Rio Grande do Sul. Ciência Rural 2010;40(11):2368-2374.

MORETTIN PA, TOLOI CMC. Análise de Séries Temporais. 2 st ed. São Paulo: Edgard Blücher; 2006.

MONTGOMERY DC, JENNINGS L, KULAHCI M. Introduction to Time Series Analysis and Forecasting. 6 st ed. New York: Wiley-Interscience; 2008.

PINDYCK RS, RUBINFELD DL. Microeconomia. 5 st ed. São Paulo: Prentice Hall; 2004.

R CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org, 2017.

ROYSTON JB. Some techniques for assessing multivariate based on the Shapiro-Wilk W. Appl. Stat. 1983;32(2):121-133.

TROEN I, PETERSEN EL. European Wind Atlas. 1989 [cited 2017 oct 31]. In: Rise National Laboratory. Roskilde, Denmark. Available from: http://www.orbit.dtu.dk/files/112135732/European_Wind_Atlas.pdf.

WERNER L, RIBEIRO JLD. Previsão de demanda: Uma aplicação dos modelos Box-Jenkins na área de assistência técnica de computadores pessoais. Gestão & Produção 2003;10(1):47-67.

VARGAS AS, PESSANHA JF. Previsão probabilística de curto prazo da geração de energia eólica. XLVI Simpósio Brasileiro de Pesquisa Operacional; 2014 setembro; Salvador;BA: 2014.

Published

2018-03-27

How to Cite

Camelo, H. do N., Lucio, P. S., Leal Junior, J. B. V., & Carvalho, P. C. M. de. (2018). Modeling box - jenkins applied a prediction of wind speed in the regions of the brazilian northeast for the fins of wind generation. Ciência E Natura, 40, e16. https://doi.org/10.5902/2179460X29785

Issue

Section

Geo-Sciences

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.