Humic fractions of soil carbon under agroforestry system in altitude swamp Pernambucano

Auteurs-es

DOI :

https://doi.org/10.5902/1980509865061

Mots-clés :

Soil organic matter, Fulvic acid, Humic acid, Humine

Résumé

MOS (soil organic matter) is a natural carbon reservoir, and divided into different stages of decomposition according to its solubility and structural complexity. In view of this context, this work aimed to quantify the carbon content in the humic fractions of the soil organic matter under an agroforestry system in three toposequences in the swamp of altitude in Pernambuco, Brazil. The study was carried out on the Yaguara farm, and the studied areas were native forest and three toposequences of agroforestry system. Soil samples were collected in trenches 1.5 x 1.5 m, at depths 0-20, 20-40 and 40-60 cm, with four replications. The carbon concentrations in the humic fractions of the soil decreased with increasing depth. The area with agroforestry system had the highest concentrations of carbon in the humic fractions. The stocks of humic fractions found in the agroforestry system area showed higher average values in the top area 5.62, 9.72 and 22.53 Mg ha-1 in relation to native forest 4.84, 8.28 and 19.20 Mg ha-1, respectively for fulvic acid, humic acid and humine. Among the evaluated areas, the soil with agroforestry system top area has great potential to increase the carbon storage in the humic fractions of the soil.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Bibliographies de l'auteur-e

Cristiane Maria Gonçalves Crespo, Federal Rural University of Pernambuco

MestreChemical Engineer, MSc.
Universidade Federal Rural de Pernambuco, Recife, PE, Brazil

Victor Casimiro Piscoya, Federal Rural University of Pernambuco

Forestry Engineer, Dr.
Universidade Federal Rural de Pernambuco, Recife, PE, Brazil

Alex Souza Moraes, Federal Rural University of Pernambuco

Chemical, Dr.
Universidade Federal Rural de Pernambuco, Recife, PE, Brazil

Manoel Vieira de França, Federal Rural University of Pernambuco

Agronomist Engineer, MSc.
Universidade Federal Rural de Pernambuco, Recife, PE, Brazil

Milton Marques Fernandes, Federal University of Sergipe

Forestry Engineer, Dr.
Universidade Federal de Sergipe, São Cristovão, SE, Brazil

Moacyr Cunha Filho, Federal Rural University of Pernambuco

Civil Engineer, Dr.
Universidade Federal Rural de Pernambuco, Recife, PE, Brazil

Nayane Laisa de Lima Cavalcante, Federal Rural University of Pernambuco

Environmental Engineer
Universidade Federal Rural de Pernambuco, Recife, PE, Brazil

Robson Carlos Pereira de Melo, Federal Rural University of Pernambuco

Forestry Engineer
Universidade Federal Rural de Pernambuco, Recife, PE, Brazil

Thaisa Folha Piscoya, Superintendência do Desenvolvimento do Nordeste

Chemical Engineer, MSc.
Superintendência do Desenvolvimento do Nordeste, Recife, PE, Brazil

Jorge Piscoya-Roncal, Universidad Nacional de Trujillo

Mechanical Engineer, MSc.
Universidad Nacional de Trujillo, Trujillo, Peru

Ludmilla Morais Pereira, Federal University of Tocantins

Forestry Engineer
Universidade Federal do Tocantins, Gurupi, TO, Brazil

Raimundo Rodrigues Gomes Filho, Federal University of Sergipe

Agronomist Engineer, Dr.
Universidade Federal de Sergipe, São Cristovão, SE, Brazil

Francisco Sandro Rodrigues Holanda, Federal University of Sergipe

Agronomist Engineer, Dr.
Universidade Federal de Sergipe, São Cristovão, SE, Brazil

Alceu Pedrotti, Federal University of Sergipe

Agronomist Engineer, Dr.
Universidade Federal de Sergipe, São Cristovão, SE, Brazil

Jamilie Brito de Castro, Federal University of Tocantins

Forestry Engineer, MSc.
Universidade Federal do Tocantins, Gurupi, TO, Brazil

Renisson Neponuceno de Araújo Filho, Federal University of Tocantins

Forestry Engineer, Dr.
Universidade Federal do Tocantins, Gurupi, TO, Brazil

Références

BAYER, C.; MIELNICZUK, J.; MARTIN-NETO, L.; ERNANI, P. R. Stocks and humification degree of organic matter fractions as affected by no-tillage on a subtropical soil. Plant and Soil, v. 238, n.1, p. 133-140, 2002. DOI: https://doi.org/10.1023/A:1014284329618 DOI: https://doi.org/10.1023/A:1014284329618

CANELLAS, L. P.; BERNER, P. G.; SILVA, S. G. D.; SILVA, M. B.; SANTOS, G. D. A. Frações da matéria orgânica em seis solos de uma topossequência no estado do Rio de Janeiro. Pesquisa Agropecuária Brasileira, v.35, p. 133-143, 2000. DOI: https://doi.org/10.1590/S0100-204X2000000100016

CHEN, Z.; WANG, H.; LIU, X.; ZHAO, X.; LU, D.; ZHOU, J.; LI, C. Changes in soil microbial community and organic carbon fractions under short-term straw return in a rice–wheat cropping system. Soil and Tillage Research, v. 165, p. 121-127, 2017. DOI: https://doi.org/10.1016/j.still.2016.07.018 DOI: https://doi.org/10.1016/j.still.2016.07.018

CHERTOV, O. G.; NADPOROZHSKAYA, M. A. Humus Forms in Forest Soils: Concepts and Classifications. Eurasian Soil Science, v. 51, n. 10, p. 1142-1153, 2018. DOI: https://doi.org/10.1134/S1064229318100022 DOI: https://doi.org/10.1134/S1064229318100022

CLEMENTE, E. P.; OLIVEIRA, F. S.; MACHADO, M. R.; SCHAEFER, C. E. G. R. Fracionamento da Matéria Orgânica dos Solos da Ilha da Trindade. Revista do Departamento de Geografia, v. 36, p. 48–62, 2018. https://doi.org/10.11606/rdg.v36i0.147796 DOI: https://doi.org/10.11606/rdg.v36i0.147796

COTRUFO, M. F.; RANALLI, M. G.; HADDIX, M. L.; SIX, J.; LUGATO, E. Soil carbon storage informed by particulate and mineral-associated organic matter. Nature Geoscience, v. 12, n. 12, p. 989-994, 2019. DOI: https://doi.org/10.1038/s41561-019-0484-6 DOI: https://doi.org/10.1038/s41561-019-0484-6

DIARRA, I.; KOTRA, K. K.; PRASAD, S. Assessment of biodegradable chelating agents in the phytoextraction of heavy metals from multi–metal contaminated soil. Chemosphere, p. 128483, 2020. DOI: https://doi.org/10.1016/j.chemosphere.2020.128483 DOI: https://doi.org/10.1016/j.chemosphere.2020.128483

EL-SAYED, M. E.; KHALAF, M. M.; GIBSON, D.; RICE, J. A. Assessment of clay mineral selectivity for adsorption of aliphatic/aromatic humic acid fraction. Chemical Geology, v. 511, p. 21-27, 2019. DOI: https://doi.org/10.1016/j.chemgeo.2019.02.034 DOI: https://doi.org/10.1016/j.chemgeo.2019.02.034

EMBRAPA - EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Serviço Nacional de Levantamento e Conservação de Solos (Rio de Janeiro, RJ). In: REUNIÃO TÉCNICA DE LEVANTAMENTO DE SOLOS, 10, 1979, Rio de Janeiro. Súmula… Rio de Janeiro, 1979. 83 p.

FERREIRA, D. F. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, Lavras, v. 35, n. 6, p. 1039-1042, nov./dez. 2011. DOI: https://doi.org/10.1590/S1413-70542011000600001 DOI: https://doi.org/10.1590/S1413-70542011000600001

GEE, G. W.; OR, D. 2.4 Particle‐size analysis. Methods of soil analysis: Part 4 physical methods, v. 5, p. 255-293, 2002. DOI: https://doi.org/10.2136/sssabookser5.4.c12 DOI: https://doi.org/10.2136/sssabookser5.4.c12

GROSSMAN, R.B.; T.G. REINSCH. Bulk density and linear extensibility. p. 201-228. In Dane, J.M., and G.C. Topp (eds.) Methods of soil analysis. Part 4. Physical methods. Soil Science Society of America, Madison, Wisconsin, USA. 2002. DOI: https://doi.org/10.2136/sssabookser5.4.c9

HANKE, D.; DICK, D. P. Estoque de carbono e mecanismos de estabilização da matéria orgânica do solo: uma revisão. Revista Científica Agropampa, v. 2, n. 2, p. 171-190, 2019.

JABRO, J. D.; STEVENS, W. B.; IVERSEN, W. M.; SAINJU, U. M.; ALLEN, B. L. Soil cone index and bulk density of a sandy loam under no-till and conventional tillage in a corn-soybean rotation. Soil and Tillage Research, v. 206, p. 104842, 2021. DOI: https://doi.org/10.1016/j.still.2020.104842 DOI: https://doi.org/10.1016/j.still.2020.104842

KÖPPEN, W. Climatologia: com um estúdio de los climas dew la tierra. México: FCE, p. 482-487, 1948.

MENDES JÚNIOR, H.; TAVARES, A. S.; SANTOS JÚNIOR, W. R. dos; SILVA, M. L. N.; SANTOS, B. R.; MINCATO, R. L. Water Erosion in Oxisols under Coffee Cultivation. Rev. Bras. Ciênc. Solo [online], v. 42, e0170093. Epub July 02, 2018. DOI: https://dx.doi.org/10.1590/18069657rbcs20170093 DOI: https://doi.org/10.1590/18069657rbcs20170093

MI, W.; SUN, Y.; GAO, Q.; LIU, M.; WU, L. Changes in humus carbon fractions in paddy soil given different organic amendments and mineral fertilizers. Soil and Tillage Research, v. 195, p. 104421, 2019. DOI: https://doi.org/10.1016/j.still.2019.104421 DOI: https://doi.org/10.1016/j.still.2019.104421

OLK, D. C.; BLOOM, P. R.; PERDUE, E. M.; MCKNIGHT, D. M.; CHEN, Y.; FARENHORST, A.; SENESI, N.; CHIN, Y. P.; SCHMITT-KOPLIN, P.; HERTKORN, N.; HARIR, M. Environmental and agricultural relevance of humic fractions extracted by alkali from soils and natural waters. Journal of environmental quality, v. 48, n. 2, p. 217-232, 2019. DOI: https://doi.org/10.2134/jeq2019.02.0041 DOI: https://doi.org/10.2134/jeq2019.02.0041

PÉREZ, M. G.; MARTIN-NETO, L.; SAAB, S. C.; NOVOTNY, E. H.; MILORI, D. M.; BAGNATO, V. S.; COLNAGO, L. A.; MELO, W. J.; KNICKER, H. Characterization of humic acids from a Brazilian Oxisol under different tillage systems by EPR, 13C NMR, FTIR and fluorescence spectroscopy, Geoderma, v.11, n.1. p.181-190, 2004. DOI: https://doi.org/10.1016/S0016-7061(03)00192-7 DOI: https://doi.org/10.1016/S0016-7061(03)00192-7

PFLEGER, P.; CASSOL, P. C.; MAFRA, A. L. Humic substances on a humic dystrupept under native grassland and pine plantation on different ages. Ciência Florestal, v. 27, n. 3, p. 807-817, 2017. DOI: http://dx.doi.org/10.5902/1980509828631 DOI: https://doi.org/10.5902/1980509828631

PHAM, T. G.; NGUYEN, H. T.; KAPPAS, M. Assessment of soil quality indicators under different agricultural land uses and topographic aspects in Central Vietnam. International Soil and Water Conservation Research, v. 6, n. 4, p. 280-288, 2018. DOI: https://doi.org/10.1016/j.iswcr.2018.08.001 DOI: https://doi.org/10.1016/j.iswcr.2018.08.001

POIRIER, V.; ROUMET, C.; MUNSON, A. D. The root of the matter: linking root traits and soil organic matter stabilization processes. Soil Biology and Biochemistry, v. 120, p. 246-259, 2018. DOI: https://doi.org/10.1016/j.soilbio.2018.02.016 DOI: https://doi.org/10.1016/j.soilbio.2018.02.016

SAMSON, M. É.; CHANTIGNY, M. H.; VANASSE, A.; MENASSERI-AUBRY, S.; ANGERS, D. A. Coarse mineral-associated organic matter is a pivotal fraction for SOM formation and is sensitive to the quality of organic inputs. Soil Biology and Biochemistry, v. 149, p. 107935, 2020. DOI: https://doi.org/10.1016/j.soilbio.2020.107935 DOI: https://doi.org/10.1016/j.soilbio.2020.107935

SILVA, J. M. Revisão histórica da diversidade vegetal da Zona da Mata Norte de Pernambuco com ênfase no município de Goiana. Revista Espaço Acadêmico, v. 16, n. 191, p. 12-26, 2017.

SISTI, C. P.; SANTOS, H. P.; KOHHANN, R.; ALVES, B. J.; URQUIAGA, S.; BODDEY, R. M. Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil and tillage research, v. 76, n. 1, p. 39-58, 2004. DOI: https://doi.org/10.1016/j.still.2003.08.007 DOI: https://doi.org/10.1016/j.still.2003.08.007

SOIL SURVEY DIVISION STAFF. “Soil survey manual”. Soil Conservation Service. U.S. Department of Agriculture Handbook 18, 1993.

SOIL SURVEY STAFF. Keys to Soil Taxonomy. 12. ed. Washington, DC: USDA, 2014. 300 p.

STEVENSON, F. J. Humus chemistry: genesis, composition, reactions. John Wiley & Sons, 1994.

SWIFT, R. S. Organic matter characterization. Methods of soil analysis: Part 3 chemical methods, v. 5, p. 1011-1069, 1996. DOI: https://doi.org/10.2136/sssabookser5.3.c35 DOI: https://doi.org/10.2136/sssabookser5.3.c35

VELDKAMP, E. Organic carbon turnover in three tropical soils under pasture after deforestation. Soil Science Society of America Journal, v. 58, n. 1, p. 175-180, 1994. DOI: https://doi.org/10.2136/sssaj1994.03615995005800010025x DOI: https://doi.org/10.2136/sssaj1994.03615995005800010025x

WILLIAMS, D. M.; BLANCO‐CANQUI, H.; FRANCIS, C. A.; GALUSHA, T. D. Organic farming and soil physical properties: An assessment after 40 years. Agronomy journal, v. 109, n. 2, p. 600-609, 2017. DOI: https://doi.org/10.2134/agronj2016.06.0372 DOI: https://doi.org/10.2134/agronj2016.06.0372

ZENG, Q.; DARBOUX, F.; MAN, C.; ZHU, Z.; AN, S. Soil aggregate stability under different rain conditions for three vegetation types on the Loess Plateau (China). Catena, v. 167, p. 276-283, 2018. DOI: https://doi.org/10.1016/j.catena.2018.05.009 DOI: https://doi.org/10.1016/j.catena.2018.05.009

ZHENG, Z.; ZHENG, Y.; TIAN, X.; YANG, Z.; JIANG, Y.; ZHAO, F. Interactions between iron mineral-humic complexes and hexavalent chromium and the corresponding bio-effects. Environmental Pollution, v. 241, p. 265-271, 2018. DOI: https://doi.org/10.1016/j.envpol.2018.05.060 DOI: https://doi.org/10.1016/j.envpol.2018.05.060

Téléchargements

Publié-e

2024-02-20

Comment citer

Crespo, C. M. G., Piscoya, V. C., Moraes, A. S., França, M. V. de, Fernandes, M. M., Cunha Filho, M., Cavalcante, N. L. de L., Melo, R. C. P. de, Piscoya, T. F., Piscoya-Roncal, J., Pereira, L. M., Gomes Filho, R. R., Holanda, F. S. R., Pedrotti, A., Castro, J. B. de, & Araújo Filho, R. N. de. (2024). Humic fractions of soil carbon under agroforestry system in altitude swamp Pernambucano. Ciência Florestal, 34(1), e65061. https://doi.org/10.5902/1980509865061

Articles les plus lus du,de la,des même-s auteur-e-s