Thermal treatment, heat treatment or thermal modification?

Authors

DOI:

https://doi.org/10.5902/1980509822577

Keywords:

Wood, Technical nomenclature, Thermal modification process

Abstract

Brazilian studies of a process that has been variously called in Portuguese retificação térmica, termorretificação (both with no English correspondent), tratamento térmico (thermal treatment), tratamento com calor (heat treatment) or modificação térmica (thermal modification) have been increasing since 2000. Because the standardization of concepts is important for the scientific development of any subject, the aim of this article was to provide a literature review about this process, to propose the most appropriate technical nomenclature for it in Portuguese, aiming at standardization. We reviewed articles about this process, published in 2015, in ten international scientific journals and seven Brazilian journals. We also verified a foreign textbook, the largest scientific event on the subject and information on European companies that have process patents and products on the market. Based on all the verified sources, it is recommended the technical nomenclature ‘modificação térmica’ (thermal modification) for the process and ‘modificada termicamente’ (thermally modified) for the wood/products. Technically, it is not wrong to use the terms ‘tratamento térmico’ (thermal treatment) and ‘tratada termicamente” (thermally treated) and their equivalents ‘tratamento com calor (heat treatment) and ‘tratada com calor’ (heat treated). However, in order to avoid errors of interpretation, these nomenclatures should be avoided because they are generic and traditionally used for the wellestablished process of artificial drying of wood. It is also strongly discouraged the use of ‘retificação térmica’ and ‘termorretificação’ as well as their derivatives ‘retificada termicamente’ and ‘termorretificada’.

Downloads

Download data is not yet available.

Author Biography

Djeison Cesar Batista, Universidade Federal do Espírito Santo, Jerônimo Monteiro, ES

Engenheiro Florestal, Dr. Professor do Departamento de Ciências Florestais e da Madeira, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo.

References

ALTGEN, M.; MILITZ, H. Photodegradation of thermally-modified Scots pine and Norway spruce investigated on thin micro-veneers. European Journal of Wood and Wood Products, Berlin, v. 74, 2015. DOI 10.1007/s00107-015-0980-3.

ANJOS, M.; FERREIRA, M. B. (Coord.). Miniaurélio século XXI escolar: o minidicionário da Língua Portuguesa. 4. ed. Rio de Janeiro: Nova Fronteira, 2000.

BAL, B. C. Physical properties of beech wood thermally modified in hot oil and in hot air at various temperatures. Maderas: Ciencia y Tecnología, Concepción, v. 17, n. 4, p. 789-798, 2015.

BASTANI, A.; ADAMOPOULOS, S.; MILITZ H. Gross adhesive penetration in furfurylated, N-methylol melamine-modified and heat-treated wood examined by fluorescence microscopy. European Journal of Wood and Wood Products, Berlin, 73, p. 635-642, 2015a.

BASTANI, A.; ADAMOPOULOS, S.; MILITZ, H. Water uptake and wetting behaviour of furfurylated, N-methylol melamine modified and heat-treated wood. European Journal of Wood and Wood Products, Berlin, 73, p. 627-634, 2015b.

BATISTA, D. C. Modificação térmica da madeira de Eucalyptus grandis em escala industrial pelo processo brasileiro VAP HolzSysteme®. 2012. 339 f. Tese (Doutorado em Engenharia Florestal) – Universidade Federal do Paraná, Curitiba, 2012.

BATISTA, D. C. et al. Microstructural aspects of thermally modified Eucalyptus grandis wood. Maderas: Ciencia y Tecnología, Concepción, v. 17, n. 3, p. 525-532, 2015.

BATISTA, D. C.; KLITZKE, R. J. Influência do tempo e temperatura de retificação térmica na umidade de equilíbrio da madeira de Eucalyptus grandis Hill ex Maiden. Scientia Forestalis, Piracicaba, v. 38, n. 86, p. 255-261, 2010.

BATISTA, D. C.; TOMASELLI, I.; KLITZKE, R. J. Efeito do tempo e temperatura de modificação térmica na redução do inchamento máximo da madeira de Eucalyptus grandis Hill ex Maiden. Ciência Florestal, Santa Maria, v. 21, n. 3, p. 533-540, 2011.

BIZIKS, V. et al. One-stage thermo-hydro treatment (THT) of hardwoods: analysis of form stability after five soaking-drying cycles. Holzforschung, München, v. 69, n. 5, p. 563-571, 2015.

BORGES, L. M.; QUIRINO, W. F. Higroscopicidade da madeira de Pinus caribaea var. hondurensis tratado termicamente. Biomassa & Energia, Dourados, v. 1, n. 2, p. 173-182, 2004.

BRITO, J. O. Estudo preliminar de retificação térmica da madeira de eucalipto. In: CONGRESSO FLORESTAL PANAMERICANO/ CONGRESSO FLORESTAL BRASILEIRO, 1/7., 1993, Curitiba. Anais... São Paulo: Sociedade Brasileira de Silvicultura, 1993. p. 774.

CALONEGO, F. W.; SEVERO, E. T. D.; FURTADO, E. L. Decay resistance of thermally-modified Eucalyptus grandis wood at 140°C, 160°C, 180°C, 200°C and 220°C. Bioresource Technology, Amsterdam, v. 101, n. 23, p. 9391-9394, 2010.

CANDELIER, K. et al. Utilization of temperature kinetics as a method to predict treatment intensity and corresponding treated wood quality: durability and mechanical properties of thermally modified wood. Maderas: Ciencia y Tecnología, Concepción, v. 17, n. 2, p. 253-262, 2015.

CARVALHO, A. G. et al. Colagem da madeira de Pinus termoretificada. Ciência da Madeira, Pelotas, v. 6, n. 3, p. 217-222, 2015.

ČERMÁK, P. et al. Analysis of dimensional stability of thermally modified wood affected by re-wetting cycles. BioResources, Raleigh, v. 10, n. 2, p. 3242-3253, 2015.

ČERMÁK, P. et al. The effect of wetting cycles on moisture behaviour of thermally modified Scots pine (Pinus sylvestris L.) wood. Journal of Materials Science, Berlin, v. 51, p. 1504-1511, 2016.

CIRULE, D. et al. Spectral sensitivity of thermally modified and unmodified wood. BioResources, Raleigh, v. 11, n. 1, p. 324-335, 2016.

ELAIEB, M. et al. Heat treatment of Tunisian soft wood species: effect on the durability, chemical modifications and mechanical properties. Maderas: Ciencia y Tecnología, Concepción, v. 17, n. 4, p. 699-710, 2015.

ESTEVES, B. M.; PEREIRA, H. M. Wood modification by heat treatment: a review. BioResources, Raleigh, v. 1, n. 4, p. 370-404, 2009.

EUROPEAN CONFERENCE ON WOOD MODIFICATION, 9., 2018, Arnhem. Programme... Disponível em: <https://ecwm9.shr.nl/>. Acesso em: 15 aug. 2018.

FABIYI, J. S.; OGUNLEYE, B. M. Mid-infrared spectroscopy and dynamic mechanical analysis of heat-treated obeche (Triplochiton scleroxylon) wood. Maderas: Ciencia y Tecnología, Concepción, v. 17, n. 1, p. 5-16, 2015.

FAJDIGA, G. et al. Compression test of thermally-treated beech wood: experimental and numerical analysis. BioResources, Raleigh, v. 11, n. 1, p. 223-234, 2016.

FERRARI, A. T. Metodologia da pesquisa científica. 1. ed. São Paulo: McGraw-Hill, 1982.

FIRMOLIN. Firmolin technologies. 2018. Disponível em: <http://www.firmolin.com/index.php/en/>. Acesso em: 15 aug. 2018.

FONTOURA, M. R. et al. Propriedades mecânicas e químicas da madeira de Hovenia dulcis Thunberg. tratada termicamente. Ciência da Madeira, Pelotas, v. 6, n. 3, p. 166-175, 2015.

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS. NIMF-15: directrices para reglamentar el embalaje de madera utilizado en el comercio internacional. Roma: FAO, 2003.

FPINNOVATIONS. Thermally modified wood. 2003. Disponível em: <http://www.valuetowood.ca/imports/pdf/en/tech_profiles/TP-03-01E_TLihra_English.pdf>. Acesso em: 15 ago. 2018.

GAFF, M. et al. Effect of selected parameters on the surface waviness in plane milling of thermally modified birch wood. BioResources, Raleigh, v. 10, n. 4, p. 7618-7626, 2015.

GAŠPARÍK, M. et al. Impact of thermal modification of spruce wood on screw direct withdrawal load resistance. BioResources, Raleigh, v. 10, n. 1, p. 1790-1802, 2015.

GÉRARDIN, P. New alternatives for wood preservation based on thermal and chemical modification of wood – a review. Annals of Forest Science, Paris, v. 73, n. 3, p. 559-570, 2016. DOI 10.1007/s13595-015-0531-4.

GUYONNET, R. Traitements termiques du bois Retification®. 2007. Disponível em: <https://www.emse.fr/fr/transfert/spin/depscientifiques/PC2M/retification/principes.html#haut>. Acesso em: 15 jan. 2016.

HAMADA, J. et al. Variations in the natural density of European oak wood affect thermal degradation during thermal modification. Annals of Forest Science, Paris, v. 73, n. 2, p. 277-286, 2016. DOI 10.1007/s13595-015-0499-0.

HERMOSO, E. et al. Caracterización de la madera serrada de Pinus radiata modificada térmicamente. Maderas: Ciencia y Tecnología, Concepción, v. 17, n. 3, p. 493-504, 2015.

HILL, C. A. S. Wood modification: chemical, thermal and other processes. 1. ed. West Sussex: John Wiley & Sons, 2006.

HOMAN, W. J.; JORISSEN, A. J. M. Wood modification developments. Heron, Delft, v. 49, n. 4, 2004.

HUGHES, M.; HILL, C.; PFRIEM, A. The toughness of hygrothermally modified wood. Holzforschung, München, v. 69, n. 7, p. 851-862, 2015.

HUGHES, M.; RAUTKARI, L.; JONES, D. [Website]. In: EUROPEAN CONFERENCE ON WOOD MODIFICATION, 8., 2015, Finland. Abstracts... Disponível em: <http://ecwm8.aalto.fi/Extended%20abstract%20Flyer-ECWM8.pdf>. Acesso em: 15 jan. 2016.

INTERNATIONAL THERMOWOOD ASSOCIATION. International ThermoWood Association. 2018. Disponível em: <http://www.thermowood.fi/>. Acesso em: 15 ago. 2018.

INTERNATIONAL THERMOWOOD ASSOCIATION. ThermoWood® handbook. 2003. Disponível em: <https://asiakas.kotisivukone.com/files/en.thermowood.kotisivukone.com/tiedostot/tw_handbook_080813.pdf>. Acesso em: 15 ago. 2018.

IWT MOLDRUP. Hydrothermal treatment of wood: efficient, fast and green. 2018. Disponível em: <http://www.moldrupsystem.com/>. Acesso em: 15 ago. 2018.

JAVED, M. A. et al. Magnetic resonance imaging study of water absorption in thermally modified pine wood. Holzforschung, München, v. 69, n. 7, p. 899-907, 2015.

KIM, J. S. et al. Chemical and ultrastructural changes of ash wood thermally modified using the thermo-vacuum process: Histo/cytochemical studies on changes in the structure and lignin chemistry. Holzforschung, München, v. 69, n. 5, p. 603-613, 2015a.

KIM, J. S. et al. Chemical and ultrastructural changes of ash wood thermally modified (TMW) using the thermo-vacuum process: II. Immuno cytochemical study of the distribution of noncellulosic polysaccharides. Holzforschung, München, v. 69, n. 5, p. 615-625, 2015b.

KORKUT, S.; AYTIN, A. Evaluation of physical and mechanical properties of wild cherry wood heat-treated using the thermowood process. Maderas: Ciencia y Tecnología, Concepción, v. 17, n. 1, p. 171-178, 2015.

KUZMAN, M. K. et al. Effect of heat treatment on mechanical properties of selected wood joints. European Journal of Wood and Wood Products, Berlin, v. 73, p. 689-691, 2015.

KVIETKOVÁ, M. The effect of thermal treatment of birch wood on the cutting power of plain milling. BioResources, Raleigh, v. 10, n. 4, p. 8528-8538, 2015.

KVIETKOVÁ, M. et al. Surface quality of milled birch wood after thermal treatment at various temperatures. BioResources, Raleigh, v. 10, n. 4, p. 6512-6521, 2015.

KVIETKOVÁ, M.; GAŠPARÍK, M.; GAFF, M. Effect of thermal treatment on surface quality of beech wood after plane Milling. BioResources, Raleigh, v. 10, n. 3, p. 4226-4238, 2015.

LI, Y. et al. Quasi-static and dynamic nanoindentation to determine the influence of thermal treatment on the mechanical properties of bamboo cell walls. Holzforschung, München, v. 69, n. 7, p. 909-914, 2015.

LING, Z. et al. Microstructural and topochemical characterization of thermally modified poplar (Populus cathayaha) cell wall. BioResources, Raleigh, v. 11, n. 1, p. 786-799, 2016.

MILITZ, H.; ALTGEN, M. Processes and properties of thermally modified wood manufactured in Europe. In: SCHULTZ, T. P.; GOODELL, B.; NICHOLAS, D. D. (Ed.). Deterioration and protection of sustainable materials. Washington: Oxford University Press, 2014. p. 269-285.

OLÉOBOÍS. Oléoboís industries. 2018. Disponível em: <http://www.oleobois-industries.com/en/?Home>. Acesso em: 15 ago. 2018.

PALERMO, G. P. M. et al. Avaliação da superfície da madeira de Eucalyptus grandis Hill ex Maiden tratada termicamente. Ciência Florestal, Santa Maria, v. 25, n. 1, p. 145-152, 2015.

PANDEY, K. K.; KUMAR, S. V.; SRINIVAS, K. Inhibition of leaching of water soluble extractives of Pterocarpus marsupium by heat treatment. European Journal of Wood and Wood Products, Berlin, v. 74, 2015. DOI 10.1007/s00107-015-0964-.

PEARSON, H.; ORMARSSON, S.; GABBITAS, B. Nonlinear tensile creep behavior of radiata pine at elevated temperatures and different moisture contents. Holzforschung, München, v. 69, n. 7, p. 915-923, 2015.

PIMENTEL-GOMES, F.; GARCIA, C. H. Estatística aplicada a experimentos agronômicos e florestais: exposição com exemplos e orientações para uso de aplicativos. Piracicaba: FEALQ, 2002.

PINCELLI, A. L. P. S. M. Efeito da termorretificação no envernizamento, colagem e cor da madeira de Eucalyptus saligna e Pinus caribaea var. hondurensis. 1999. 115 f. Dissertação (Mestre em Ciências) – Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 1999.

PINCELLI, A. L. P. S. M.; BRITO, J. O.; CORRENTE, J. E. Avaliação da termorretificação sobre a colagem na madeira de Eucalyptus saligna e Pinus caribaea var. hondurensis. Scientia Forestalis, Piracicaba, v. 61, p. 122-132, jun. 2002.

PLATOWOOD. Platowood® makes the world a better place. 2018a. Disponível em: <http://www.platowood.com/>. Acesso em: 15 ago. 2018.

PLATOWOOD. The Platowood® process. 2018b. Disponível em: <http://www.platowood.com/wp-content/uploads/2015/08/The-Platowood-Process.pdf>. Acesso em: 15 ago. 2018.

POUBEL, D. S. et al. Análises físicas e colorimétricas da madeira de Pinus sp. modificada termicamente. Scientia Forestalis, Piracicaba, v. 43, n. 107, p. 511-521, 2015.

QUIRINO, W. F.; VALE, A. T. Retificação térmica de Eucalyptus grandis. Floresta, Curitiba, nesp, p. 60-66, 2002.

RAPP, O. A. (Org.). Review on heat treatments of wood. In: SPECIAL SEMINAR COST ACTION E22: ENVIRONMENTAL OPTIMIZATION OF WOOD PROTECTION, Antibes, 2001. Proceedings… Hamburg: The Federal Research Centre for Forestry and Forest Products Information and Documentation, 2001. p. 1-68.

RINGMAN, R. et al. Effects of thermal modification on Postia placenta wood degradation dynamics: measurements of mass loss, structural integrity and gene expression. Wood Science and Technology, Berlin, 2015. DOI 10.1007/s00226-015-0791-z.

SAEI, A. M.; MOHEBBY, B.; ABDEH, M. R. Effects of oleothermal treatment and polydimethylsiloxane (PDMS) coating on natural weathering of beech and fir woods. Maderas: Ciencia y Tecnología, Concepción, v. 17, n. 4, p. 905-918, 2015.

SALMAN, S. et al. Decay and termite resistance of pine blocks impregnated with different additives and subjected to heat treatment. European Journal of Wood and Wood Products, Berlin, v. 74, n. 1, p. 37-42, 2016.

SANDBERG, D.; KUTNAR, A. Thermally modified timber: recent developments in Europe and North America. Wood and Fiber Science, Monona, v. 48, nesp, p. 28-39, 2016.

SIMPSON, W. T. (Ed.). Dry kiln operator’s manual. Madison: United States Department of Agriculture; Forest Service; Forest Products Laboratory, 1991.

SIVRIKAYA, H. et al. Comparative biological resistance of differently thermal modified wood species against decay fungi, Reticulitermes grassei and Hylotrupes bajulus. Maderas: Ciencia y Tecnología, Concepción, v. 17, n. 3, p. 559-570, 2015.

SMITH, J. M.; VAN, N. H. C.; ABBOTT, M. M. Introdução à termodinâmica da engenharia química. Rio de Janeiro: LTC, 2011.

SONDEREGGER, W. et al. On-line monitoring of hygroscopicity and dimensional changes of wood during thermal modification by means of neutron imaging methods. Holzforschung, München, v. 69, n. 1, p. 87-95, 2015.

TAKESHITA, S.; JANKOWSKY, I. P. Redução na movimentação dimensional da madeira de Jatobá (Hymenaea sp.) e Muiracatiara (Astronium sp.) submetidas a tratamento térmico adicional. Scientia Forestalis, Piracicaba, v. 43, n. 106, p. 345-352, 2015.

TIMURA. Thermo wood: patented technology from Timura. 2018. Disponível em: https://www.timurawood.com/wood-manufacturer/thermo-wood>. Acesso em: 15 ago. 2018.

TJEERDSMA, B. et al. Characterization of thermally modified wood: molecular reasons for wood performance improvement. Holz als Roh-und Werkstoff, Berlin, v. 56, p. 149-153, 1998.

TODOROVIĆ, N.; POPOVIĆ, Z.; MILIĆ, G. Estimation of quality of thermally modified beech wood with red heartwood by FT-NIR spectroscopy. Wood Science and Technology, Berlin, v. 49, p. 527-549, 2015.

TORNIAINEN, P.; ELUSTONDO, D.; DAGBRO, O. Industrial validation of the relationship between color parameters in thermally modified spruce and pine. BioResources, Raleigh, v. 11, n. 1, p. 1369-1381, 2016.

TRCALA, M.; ČERMÁK, P. Numerical analysis of temperature profiles during thermal modification of wood: chemical reactions and experimental verification. Holzforschung, München, v. 69, n. 3, p. 321-328, 2015.

TUKIAINEN, P.; HUGHES, M. The effect of elevated temperature and high moisture content on the fracture behaviour of thermally modified spruce. Journal of Materials Science, Berlin, v. 51, n. 3, p. 1437-1444, 2016.

WANG, W. et al. Thermal modification of southern pine combined with wax emulsion preimpregnation: effect on hydrophobicity and dimensional stability. Holzforschung, München, v. 69, n. 4, p. 405-413, 2015.

WDE MASPELL. High temperature treatment. 2018. Disponível em: <http://www.wde-maspell.com/high-temperature-treatment.html>. Acesso em: 15 ago. 2018.

WILLEMS, W. et al. Quality control methods for thermally modified wood. Holzforschung, München, v. 69, n. 7, p. 875-884, 2015.

WOOD TREATMENT TECHNOLOGY. Thermo treatment plant – producing thermally modified timber: TMT wood. 2018. Disponível em: http://wtt.global/products/thermo-treatment/>. Acesso em: 15 ago. 2018.

XIE; LIU, Y.; SUN, Y. Heat treated wood and its development. Journal of Forestry Research, Berlin, v. 13, n. 2, p. 224-230, 2002.

YALCIN, M.; SAHIN, H. I. Changes in the chemical structure and decay resistance of heat-treated narrow-leaved ash wood. Maderas: Ciencia y Tecnología, Concepción, v. 17, n. 2, p. 435-446, 2015.

YANG, H.; CHENG, W.; HAN, G. Wood modification at high temperature and pressurized steam: a relational model of mechanical properties based on a neural network. BioResources, Raleigh, v. 10, n. 3, p. 5758-5776, 2015.

YANG, Y. et al. Influences of thermo-vacuum treatment on colors and chemical compositions of alder birch wood. BioResources, Raleigh, v. 10, n. 4, p. 7936-7945, 2015.

ZANUNCIO, A. J. V. et al. Effect of extractives on wood color of heat treated Pinus radiata and Eucalyptus pellita. Maderas: Ciencia y Tecnología, Concepción, v. 17, n. 4, p. 857-864, 2015.

ZAUER, M. et al. Thermal modification of European beech at relatively mild temperatures for the use in electric bass guitars. European Journal of Wood and Wood Products, Berlin, v. 74, p. 43-48, 2016.

ZHAN, J.; AVRAMIDIS, S. Needle fir wood modified by surface densification and thermal post-treatment: hygroscopicity and swelling behavior. European Journal of Wood and Wood Products, Berlin, v. 74, p. 49-56, 2016.

ZHANG, T. et al. Effects of heat treatment on physical-mechanical properties of Eucalyptus regnans. BioResources, Raleigh, v. 10, n. 2, p. 3531-3540, 2015.

ZIGON, J. et al. The influence of heat and chemical treatments of beech wood on the shear strength of welded and UF bonded specimens. European Journal of Wood and Wood Products, Berlin, v. 73, p. 685-687, 2015.

Published

2019-04-04

How to Cite

Batista, D. C. (2019). Thermal treatment, heat treatment or thermal modification?. Ciência Florestal, 29(1), 463–480. https://doi.org/10.5902/1980509822577

Issue

Section

Review Article

Most read articles by the same author(s)