Estudo das componentes do balanço hidrológico durante episódios de ZCAS

Autores

DOI:

https://doi.org/10.5902/2179460X55315

Palavras-chave:

Precipitação, Ciclo Diurno, Sudeste, Amazônia

Resumo

A Zona de Convergência do Atlântico Sul (ZCAS) é um dos sistemas meteorológicos que exerce forte papel no regime de chuvas na região Norte, Centro-Oeste e Sudeste do Brasil. Nesse sentido, este trabalho tem como objetivo analisar o ciclo diurno das componentes do balanço hidrológico durante eventos de ZCAS. Por meio dos dados horários da reanálise atmosférica do Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA2) foram analisadas as variáveis evapotranspiração, precipitação, convergência do fluxo de umidade e variação do armazenamento de umidade na atmosfera com o tempo durante os períodos da madrugada, manhã, tarde e noite em toda a região da ZCAS e especificamente na região da Amazônia e Sudeste brasileiro. Na análise das regiões separadamente verifica-se que mesmo durante o período noturno, existe a atividade convectiva e divergência de vapor de água na Amazônia o que permite que o fluxo de vapor seja transportado para o Sudeste mesmo durante os períodos noturnos. Sobre a região Sudeste é possível verificar que durante a madrugada a convergência de umidade atmosférica pode explicar quase totalmente a precipitação durante o período noturno. Ao longo do dia, grande parte da precipitação pode ser explicada pelo aumento da evapotranspiração sobre o Sudeste.

Downloads

Não há dados estatísticos.

Biografia do Autor

Ana Paula da Silva Faggiani, Universidade Federal de Santa Catarina, Florianópolis, SC

Graduanda em Meteorologia na Universidade Federal de Santa Catarina. Participou do projeto Sistema Integrado de Ferramentas de Análise e Previsão Hidrometeorológica de Santa Catarina (SIFAP-SC) como bolsista de iniciação cientifica. Pertenceu ao Grupo de Pesquisa Interdisciplinary Environmental Studies (IpES).

Mário Francisco Leal de Quadro, Instituto Federal de Santa Catarina, Florianópolis, SC

Possui graduação em Meteorologia pela Universidade Federal de Pelotas, mestrado em Meteorologia pelo Instituto Nacional de Pesquisas Espaciais e doutorado em Meteorologia pela Universidade de São Paulo. Atualmente é Coordenador do Curso de Mestrado Profissional em Clima e Ambiente e professor do Curso de Meteorologia do Instituto Federal de Santa Catarina. Tem larga experiência na área de desenvolvimento de aplicativos meteorológicos adquiridos em diversos centros de Meteorologia do Brasil, tais como CPTEC/INPE, onde trabalhou com operacionalização de Modelos Climáticos, SIMEPAR e EPAGRI/CIRAM.

Luis Gustavo de Gonçalves de Gonçalves, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, SP

Possui graduação em Meteorologia pela Universidade Federal de Pelotas e Mestrado em Assimilação dos Dados em Meteorologia pelo INPE. Foi membro do Hydrological Sciences Branch da NASA/GSFC em Greenbelt, MD, USA onde iniciou como pós-doutor do National Ressearch Council (NRC) parte do U.S. National Academy of Sciences após ter concluído seu Ph.D. em hidrologia pelo Hydrology and Water Resources Department na Universidade do Arizona. É coordenador do Grupo de Desenvolvimento em Assimilação de Dados (GDAD) da Divisão de Modelagem e Desenvolvimento (DMD) daquele centro.

Dirceu Luis Herdies, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, SP

Possui graduação em Física pela Universidade Federal de Santa Maria (UFSM), mestrado no Instituto Nacional de Pesquisas Espaciais em Meteorologia e doutorado em Ciências Atmosféricas pela Universidade de São Paulo com estágio sanduiche na NASA/GSFC. Realizou o pós-doutorado no NCEP/USA e na NASA/GSFC. Pesquisador visitante da NASA/GSFC e da Universidade de Maryland e atualmente é pesquisador titular do Instituto Nacional de Pesquisas Espaciais e coordenador da pós-graduação em Meteorologia.

Referências

AGÊNCIA NACIONAL DAS ÁGUAS [Internet]. Brasília: Ministério do Desenvolvimento Regional (BR) [cited 2007]. Caderno de recursos hídricos. Disponibilidade e demanda de recursos hídricos no Brasil. Disponível em: https://www.ana.gov.br/acesso-a-informacao/institucional/publicacoes#cadernos_de_recursos_hidricos. Acesso em: 3 abr. 2020.

ALVAREZ MS, VERA CS, KILADIS GN, LIEBMANN B. Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America. Climate Dynamics. 2015; 46 (245-262).

AMBRIZZI, T.; FERRAZ, S. E. T. An objective criterion for determining the south atlantic convergence zone. Frontiers in Environmental Science. 2015; 3 (1–9).

BERBERY EH, BARROS VR. The Hydrologic Cycle of the La Plata Basin in South America. Journal of Hydrometeorology. 2002; 3 (630–645).

BOMBARDI R J, CARVALHO LMV, JONES C, REBOITA MS. Precipitation over eastern South America and the South Atlantic Sea surface temperature during neutral ENSO periods. Climate Dynamics. 2014; 42 (1553–1568).

BOSILOVICH MG, LUCCHESI R, SUAREZ M.2016: MERRA-2: File Specification. GMAO Office Note No. 9 (Version 1.1), 73 pp. Disponível em: http://gmao.gsfc.nasa.gov/pubs/office_notes. Acesso em: 2 abr. 2020.

CARVALHO LMV, JONES C, LIEBMANN B. The South Atlantic convergence zone: Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. Journal of Climate. 2004; 17 (88–108).

CARVALHO LMV, JONES C, LIEBMANN B. Extreme precipitation events in Southeastern South America and large–scale convective patterns in the South Atlantic Convergence Zone. Journal of Climate. 2002; 15 (2377–2394).

CAVALCANTI EP, GANDU AW, AZEVEDO. Transporte e balanço de vapor d’água atmosférico sobre o Nordeste do Brasil. ISSN 1807-1929. 2002; 17 (207-217).

COELHO CAS, OLIVEIRA CP, AMBRIZZI T, REBOITA MS, CARPENEDO CB, CAMPOS LPS, et al. The 2014 southeast Brazil austral summer drought: regional scale mechanisms and teleconnections. Climate Dynamics. 2015; 46 (3737–3752).

CORREIA FRS. Zonas de Convergência Subtropicais na América do Sul: Características da Circulação e Fluxo de Umidade [monografia]. Rio de Janeiro: Departamento de Meteorologia/UFRJ; 2013.

CUTRIM EMC, MARTIN DW, BUTZOW DG, SILVA IM, YULAEVA. Pilot analysis of hourly rainfall in Central and Eastern Amazonia. Journal of Climate. 2000;13(1326–1334).

DA ROCHA RP, MORALES CA, CUANDRA SV, AMBRIZZI T. Precipitation diurnal cycle and summer climatology assessment over South America: An evaluation of Regional Climate Model version 3 simulations. Journal of Geophysical Research: Atmospheres. 2009; 114, D10108.

ESCOBAR G. Zona De Convergência Do Atlântico Sul (Zcas): Critério De Detecção Para Uso Em Centros Operacionais De Previsão De Tempo 2019. Disponível em: http://mtc-m21c.sid.inpe.br/col/sid.inpe.br/mtc-m21c/2019/01.07.12.08/doc/publicacao.pdf. Acesso em: 6 abr. 2020.

FERREIRA N, SANCHES M, and DIAS MAFS. Composite analysis of the South Atlantic Convergence Zone during el Niño and la Niña periods. ISSN 1982-4351. 2004; 19 (89–98).

FIGUEROA SN, SATYAMURTY P, SILVA DIAS PL. Simulations of the summer circulation over the South American region with an eta coordinate model. Journal of the Atmospheric Sciences. 1995; 52 (1573–1584).

GAN MA, KOUSKY VE, ROUPELEWSKI CF. The South America Monsoon Rainfall over West-Central Brazil. Journal of Climate. 2004; 17 (47–66).

GAN MA, MANZI AO, CANDIDO LA. Sensibilidade da Zona de Convergência do Atlântico Sul (ZCAS) à Condição Hídrica do Solo: um estudo de caso. ISSN 1982-4351. 2006; 43.

GILES JA, RUSSICA RC, MENÉNDEZ CG. The diurnal cycle of precipitation over South America represented by five gridded datasets. International Journal of Climatology.2020; 40 (668–686).

GRIMM AM. Interannual climate variability in South America: impacts on seasonal precipitation, extreme events and possible effects of climate change. Stoch Environ Res Risk Assess. 2011; 25 (537–554).

GRIMM AM, SILVA DIAS PL. Analysis of tropical-extra-tropical interactions with influence functions of a barotropic model. Journal of the Atmospheric Sciences. 1995; 52 (3538–3555).

HERDIES DL, SILVA AD, DIAS MAFS, FERREIRA RN. Moisture budget of the bimodal pattern of the summer circulation over south america. Journal of Geophysical Research. 2002; 107 (42–1–42–10).

JANOWIAK JE, KOUSKY VE, JOYCE RJ. (2005) Diurnal cycle of precipitation determined from the CMORPH high spatial and temporal resolution global precipitation analyses. Journal of Geophysical Research. 2005;110 (1–18).

KARAM HN, BRAS RL. Climatological Basin-Scale Amazonian Evapotranspiration Estimated through a Water Budget Analysis. Journal of Hydrometeorology.2008; 9 (1048–1060).

KODAMA Y. [Large-scale common features of Sub-tropical Convergence Zones (The Baiu Frontal Zone, The SPCZ, and the SACZ). Part II: condictions of the circulation for generating the STCZs]. Journal of Meteorological Society of Japan. 1993; 71 (5): 581-610. Japanese.

KOUSKY VE, JANOWIAK JE, ROBERT JJ. The Diurnal Cycle of Precipitation over South America Based on CMRPH. [http://mtc-m16b.sid.inpe.br/col/cptec.inpe.br/adm_conf/2005/10.03.10.43/doc/1113-1116.pdf] 2006.

KRISHNAMURTI TN, KANAMITSU M, KOSS WJ, LEE JD. Tropical east-west circulations during the northern winter. Journal of the Atmospheric Sciences. 1993; 30 (780–787).

LENTERS J D, COOK KH. Simulation and Diagnosis of the Regional Summertime Precipitation Climatology of South America. Journal of Climate. 1995; 8 (2988–3005).

MARENGO, JA. Interdecadal Variability and Trends of Rainfall Across the Amazon Basin. Theoretical and Applied Climatology. 2004; 78 (79–96).

MARENGO JA. The characteristics and variability of the atmospheric water balance in the Amazon basin: Spatial and temporal variability. Climate Dynamics. 2005; 24 (11–22).

MARENGO JA. On the Hydrological Cycle of the Amazon Basin: a historical review and current state-of-the-art. ISSN 1982-4351. 2006a; 21 (1-19).

MARENGO JA, LIEBMANN B, GRIMM AM, MISRA V, SILVA DIAS PL, CALVALCANTI IFA, et al. Review recent developments on the South American monsoon system. Int. J. Climatol. 2012; 32 (1-21).

MATOS AJS, SILVA AS, ALMEIDA IS, and CANDIDO MO. (2014) Assessment of a real-time flood forecasting at the Doce river basin: summer 2013 event. In 6th International Conference on Flood Management (São Paulo: Brazilian Association of Water Resources–ABRHidro) [Internet]; 2014. Disponível em: http://eventos.abrh.org.br/icfm6/proceedings/. Acesso em: 2 abr. 2020.

NASCIMENTO MG, HERDIES DL, SOUZA DO. The South American Water Balance: The Influence of Low-Level Jets. Journal of Climate.2016; 29 (1429–1449).

NIELSEN DM, BELÉM AL, MARTON E, CATALDI M. Dynamics-based regression models for the South Atlantic Convergence Zone. Climate Dynamics. 2019; 52 (5527–5553).

NOGUES-PAEGLE J, MECHOSO CR, FU R, BERBERY EH, CHAO WC, CHEN T, et al. Progress in Pan American CLIVAR Research: Understanding the South American Monsoon. Meteorologica. 1 and 2002; 2 (3-32).

NOGUÉS-PAEGLE J, MO EKC. Alternating wet and dry conditions over the South America during summer. Monthly Weather Review. 1997; 125 (279–291).

NOGUÉS-PAEAGLE J, MECHOSO CR, FU R, BERBERY EH, CHAO WC, CHEN T, et al. Profress in Pan American CLIVAR Research: Understanding the South American Monsoon, Metereological. 1 and 2. 3-32.

QUADRO MFL. Estudo de Episódios de Zona de Convergência do Atlântico Sul (ZCAS) sobre a América do Sul [dissertação]. São José dos Campos: Instituto Nacional de Pesquisas Espaciais/INPE; 1994. 123.

QUADRO MFL, BERBERY EH, SILVA DIAS MA, HERDIES DL, GONÇALVES LG. The atmospheric water cycle over South America as seen in the new generation of global reanalyses. In AIP Conf Proc. 2013; 1531 (1) (732–735).

TRENBERTH KE. Atmospheric moisture recycling: role of advection and local evaporation. Journal of Climate. 1999; 12 (1368–1381).

TALJAARD JJ. Synoptic Meteorology of the Southern Hemisphere. ISBN 978-1-935704-33-1. 1972 (139-213).

STRETEN NA. Some characteristics of satellite-observed bands of persistent cloudiness over the Southern Hemisphere. Monthly Weather Review. 1973; 101 (486–495).

QUADRO MFL, SILVA DIAS MAF, HERDIES DL, GONCALVES LGG. Análise Climatológica da Precipitação e do Transporte de Umidade na Região da ZCAS Através da Nova Geração de Reanálises. ISSN 1982-4351. 2012; 27 (152-162).

REBOITA M, DUTRA L, DIAS C. Diurnal cycle of precipitation simulated by RegCM4 over South America: present and future scenarios. CR 70:39-55. 2016; 70 (39–55).

REBOITA MS, IWABE CMN, DA ROCHA RP, AMBRIZZI T. Análise de um ciclone semi-estacionário na costa sul do Brasil associado a bloqueio atmosférico. ISSN 1982-4351. 2009; 24 (407-422).

REICHLE RH. The MERRA-Land Data Product, version 1.1. GMAO Office Note No. 3, NASA Global Modeling and Assimilation Office, Goddard Space Flight Center, Greenbelt, MD, USA.2012;38pp Disponível em: http://gmao.gsfc.nasa.gov/pubs/office_notes. Acesso em: 3 abr. 2020

REICHLE RH, KOSTER RD, DE LANNOY GJ, FORMAN BA, LIU Q, MAHANAMA SP, TOURÉ A. Assessment and Enhancement of MERRA Land Surface Hydrology Estimates. Journal of Climate.2011; 24 (6322–6338).

REICHLE RH, LIU Q. Observation-Corrected Precipitation Estimates in GEOS-5. NASA/TM–2014-104606, Vol. 35. Disponível em: http://gmao.gsfc.nasa.gov/pubs/tm/docs/Reichle734.pdf Acesso em: 3 abr. 2020.

RIENECKER MM, SUAREZ MJ, GELARO R, TODLING R, BACMEISTER J, LIU E, et al. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. Journal of Climate.2011; 24 (3624–3648).

ROBERTSON AW, MECHOSO CR. Interannual and inter- decadal variability of the South Atlantic convergence zone. Monthly Weather Review. 2000; 128 (2947-2957).

ROMATSCHKE U, HOUZE RA. Extreme summer convection in South America. Journal of Climate. 2010; 23 (3761–3791).

ROSA EB. Desempenho de um método automático de detecção de episódios de ZCAS [dissertção]. São José dos Campos: Instituto Nacional de Pesquisas Espaciais/INPE; 2017.

ROSA EB, PEZZI LP, QUADRO MFL, BRUNSELL N. Automated Detection Algorithm for SACZ, Oceanic SACZ, and Their Climatological Features. Frontiers in Environmental Science. 2020; 8: 18.

SANCHES MB. Análise Sinótica da Zona de Convergência do Atlântico Sul (ZCAS) Utilizando-se a Técnica de Composição [dissertação]. São José dos Campos: Instituto Nacional de Pesquisas Espaciais/INPE; 2002. 95.

SANCHES MB, DIAS MAFS. Análise sinótica de verão: A influência da zona de convergência do atlântico sul (zcas). In: IX CONGRESSO BRASILEIRO DE METEOROLOGIA, 1996, Campos do Jordão, SP, Brasil. Anais do IX Congresso Brasileiro de Meteorologia. Rio de Janeiro, RJ, Brasil: SBMET, 1996.

SATYAMURTY P, DA COSTA CPW, MANZI AO. Moisture source for the Amazon Basin: a study of contrasting years. Theoretical and Applied Climatology. 2013; 111 (195–209).

YANG S, SMITH EA. Mechanisms for diurnal variability of global tropical rainfall observed from TRMM. Journal of Climate. 2006; 19 (5190–5226).

ZHOU J, LAU KM. Does a Monsson Climate Exist Over South America? Journal of Climate. 1998; 11 (1020–1040).

Downloads

Publicado

2020-09-25

Como Citar

Faggiani, A. P. da S., Quadro, M. F. L. de, Gonçalves, L. G. de G. de, & Herdies, D. L. (2020). Estudo das componentes do balanço hidrológico durante episódios de ZCAS. Ciência E Natura, 42, e14. https://doi.org/10.5902/2179460X55315

Artigos mais lidos pelo mesmo(s) autor(es)

Artigos Semelhantes

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.