Analysis of a Thermoelectric Air Dehumidifier

Authors

DOI:

https://doi.org/10.5902/2179460X92122

Keywords:

Dehumidifier, Thermoelectric, Peltier

Abstract

The present study aims to analyze a thermoelectric air dehumidifier. To this end, knowledge of transport phenomena was applied in combination with experimental measurements of temperature at the heat sinks and the mass flow rate of extracted water. A mathematical model was developed based on an air dehumidifier equipped with a Peltier module, showing a deviation of 16.3% from the experimentally determined water production. The developed model indicates that the device does not operate with an adequate volumetric airflow to achieve maximum efficiency. This highlights the need for future studies in which the proposed improvements are implemented and the device is re-evaluated.

Downloads

Download data is not yet available.

Author Biographies

Mathias Verdum de Almeida, Universidade Federal de Santa Maria

Graduated in High School from Escola Totem Cachoeira do Sul (2021). He is currently an undergraduate student in Mechanical Engineering at the Universidade Federal de Santa Maria - Cachoeira do Sul.

Arthur Sandri Lunkes, Universidade Federal de Santa Maria

Mechanical Engineering Academic, Universidade Federal de Santa Maria – Cachoeira do Sul

Juan Augusto Mayer Copetti, Universidade Federal de Santa Maria

Mechanical Engineering Academic, Universidade Federal de Santa Maria – Cachoeira do Sul

Matheus Fritz Warol Porto Rodrigues, Universidade Federal de Santa Maria

Mechanical Engineering Academic, Universidade Federal de Santa Maria – Cachoeira do Sul

Maximiliano Silveira de Souza, Universidade Federal de Santa Maria

Mechanical Engineering Academic, Universidade Federal de Santa Maria – Cachoeira do Sul.

Cristiano Frandalozo Maidana, Universidade Federal de Santa Maria

PhD in Mechanical Engineering, Professor of the Mechanical Engineering Course, Universidade Federal de Santa Maria – Cachoeira do Sul.

Charles Rech, Universidade Federal de Santa Maria

PhD in Mechanical Engineering, Professor of the Mechanical Engineering Course, Universidade Federal de Santa Maria – Cachoeira do Sul.

André Francisco Caldeira, Universidade Federal de Santa Maria

PhD in Automation and Systems, Professor of the Mechanical Engineering Course, Universidade Federal de Santa Maria – Cachoeira do Sul.

Simone Ferigolo Venturini, Universidade Federal de Santa Maria

PhD in Production Engineering, Universidade Federal de Santa Maria.

Carmen Brum Rosa, Universidade Federal de Santa Maria

Professor of the Postgraduate Program in Production Engineering (PPGEP), Universidade Federal de Santa Maria.

References

Britânia. (s.d.). Desumidificador Britânia 1,1L 7 Cores de Iluminação BDE01. https://www.britania.com.br/desumidificador-bde01-touch-biv-065503023/p?idsku=22362&gad_source=4&gclid=CjwKCAiA6aW6BhBqEiwA6KzDc3UhLssFFv_0HanV3xipFRHZzzXVO8cqHrmxeeSeSh3QsCqVrQBElRoCmmEQAvD_BwE.

Carvalho, L., Raphael, R., & Cachoeira, T. (2016). Análise de sistema de obtenção de água através de desumidificação do ar com uso de célula peltier. CEFET, Rio de Janeiro. https://www.cefet-rj.br/attachments/article/2943/An%C3%A1lise%20de%20sistema%20de%20obten%C3%A7%C3%A3o%20de%20%C3%A1gua%20atrav%C3%A9s%20de%20desumidifica%C3%A7%C3%A3o%20do%20ar%20com%20uso%20de%20c%C3%A9lula%20Pelti.pdf.

Cooler Master. (s.d.). High Performace Thermal Paste. https://www.coolermaster.com/en-global/products/high-performance-thermal-paste/?tab=tech_spec.

Galvin, R. (2010). Solving mould and condensation problems: A dehumidifier trial in a suburban house in Britain. Energy and Buildings, 42(11), 2118–2123.

Henker, E., et al. (2014). Água potável com desumidificação do ar e energia solar: adaptação ao stress hídrico no RS. 19(3), 345–352.

Incropera, F. P., & DeWitt D. P. (2014). Fundamentos da Transferência de Calor e de Massa (7a ed.). LTC Editora.

Kubov, V. I., Dymytrov Y. Y., & Kubova, R. N. (2016). LTspice-model of Thermoelectric Peltier-Seebeck Element. In 2016 IEEE 36th International Conference on Electronics and Nanotechnology (ELNANO), 47-51.

‌Mendell, M. J. et al. (2009). Health effects associated with dampness and mould. In Organização Mundial da Saúde. WHO guidelines for indoor air quality: dampness and mould.

Moram, M. J., Shapiro, H. N., Boettner, D. D., & Bailey, M. B. (2014). Princípios de Termodinâmica para Engenharia, (7a ed.). LTC Editora.

Srivastava, R. S., et al. (2021). Development and applications of thermoelectric based dehumidifiers. Energy and Buildings, 252, 111-446.

Teertstra, P., Yovanovich, M. M., & Culham, J. R. (1999) Analytical forced convection modeling of plate fin heat sinks. Proceedings of 15th IEEE Semi-Therm Symposium, 34-41.

Tubrax. (s.d.). Mini Desumidificador Elétrico 127-220v Antimofo 500ml Tubrax. Leroy Merlin. https://www.leroymerlin.com.br/mini-desumidificador-eletrico-127-220v-antimofo-500ml-tubrax_1567811425?region=outros&srsltid=AfmBOory2ezmkFuJwaS-_X84Rqdx7V4WY3x4aT-R8G1veUeBJ-ZBiR8XlH8#descricao-do-produto.

Vián, J. G., Astrain, D., & Domínguez, M. (2002) Numerical modelling and a design of a thermoelectric dehumidifier. Applied thermal engineering, 22(4), 407–422. https://doi.org/10.1016/S1359-4311(01)00102-8

Yao, Y., et al. (2017). Optimization design and experimental study of thermoelectric dehumidifier. Applied Thermal Engineering, 123, 820–829.

Downloads

Published

2025-11-19

How to Cite

Almeida, M. V. de, Lunkes, A. S., Copetti, J. A. M., Rodrigues, M. F. W. P., Souza, M. S. de, Maidana, C. F., Rech, C., Caldeira, A. F., Venturini, S. F., & Rosa, C. B. (2025). Analysis of a Thermoelectric Air Dehumidifier. Ciência E Natura, 47(esp. 4), e92122. https://doi.org/10.5902/2179460X92122

Issue

Section

III Feira de Ciências, Tecnologia e Inovação da UFSM-CS

Most read articles by the same author(s)

1 2 > >>