Optimizing an alternative method to remove Pb2+ and Ba2+ in aqueous solution by using coconut fiber as biosorbent material

Authors

DOI:

https://doi.org/10.5902/2179460X91589

Keywords:

Environmental pollution, Biosorbent materials, Potentially toxic metals

Abstract

This work presents the optimization of an alternative method for the removal of lead (Pb²⁺) and barium (Ba²⁺) from public supply water using coconut fiber as a biosorbent material. A system of four fixed-bed reactors connected in series, each with a volume of 0.250 L, was employed, operated in an upward continuous flow. A central composite rotational design (CCRD) was used, where the critical values that maximized the removal of Pb²⁺ ions were: pH = 4.8; time = 57.11 min; and biomass concentration = 25.45 g/L. For Ba²⁺ ions, the critical values were: pH = 4.99; time = 53.41 min; and biomass concentration = 19.83 g/L. The removal percentage was determined at the critical values, and an increase in lead removal (from 82% to 88%) and a reduction in barium removal (from 94% to 89.2%) were observed when using four reactors in series. In the multi-elemental analysis containing both lead and barium simultaneously and using the average values found for the ions analyzed separately (pH = 5.0; time = 55.26 min; biomass concentration = 22.64 g/L), there was a slight reduction in lead removal (from 81.2% to 78%), but within the standard deviation, and barium removal remained stable (92.6%). Thus, this alternative method proved to be promising for the removal of potentially toxic metals in public supply water.

Downloads

Download data is not yet available.

Author Biographies

Mário Sérgio da Luz, Universidade Federal do Triângulo Mineiro

Graduated with a degree in Chemical engineering, Master and Doctorate´s degree in Materials Science Engineer at São Paulo State University (USP). Professor at Institute of Technological and Exact Sciences (ICTE/UFTM).

Bruno Borges Canelhas, Instituto Federal de Educação, Ciência e Tecnologia do Triângulo Mineiro

He holds a degree in Chemistry, a master's degree and a PhD in Chemistry from the Federal University of Uberlândia (UFU) and a PhD in Chemistry from the Federal University of Triângulo Mineiro (UFTM). Professor at the Federal Institute of Triângulo Mineiro (IFTM).

Ariana de Campos, Universidade Federal do Triângulo Mineiro

Graduated with a degree in Physics, Master in Physics at State University of Londrina and Doctorate´s degree in Physics at Campinas State University (UNICAMP). Professor at Institute of Technological and Exact Sciences (ICTE/UFTM).

Deusmaque Carneiro Ferreira, Universidade Federal do Triângulo Mineiro

Graduated with a degree in Chemistry, Master and Doctorate´s degree in Chemistry at Federal University of Uberlândia (UFU). Professor at Institute of Technological and Exact Sciences (ICTE/UFTM).

Vinícius Carvalho Rocha, Universidade Federal do Triângulo Mineiro

Graduated with a degree in Environmental Engineering, Master and Doctorate´s degree in Hydraulics and Sanitation at São Paulo State University (USP). Professor at Institute of Technological and Exact Sciences (ICTE/UFTM).

Carla Eloisa Diniz dos Santos, Universidade Federal do Triângulo Mineiro

Environment Engineer, PhD in environment engineer

Júlio Cesar de Souza Inácio Gonçalves, Universidade Federal do Triângulo Mineiro

Graduated with a degree in environmental engineering, Master and Doctorate´s degree in Hydraulics and Sanitation at São Paulo State University (USP). Professor at Institute of Technological and Exact Sciences (ICTE/UFTM).

Cristiano Poleto, Universidade Federal do Rio Grande do Sul

Graduated with a degree in Civil Engineering, Master and Doctorate´s degree in Water Resources at Federal University of Rio Grande do Sul (UFRGS). Professor at Hydraulic Research Institute (IPH/UFRGS).

References

Antunes, E. C. E. S., Pereira, J. E. S., Ferreira R. L. S., Medeiros, M. F. D. & Barros Neto, E. F. (2018).Remoção de corante têxtil utilizando a casca do abacaxi como adsorvente natural. Holos, v. 34, n. 3. https://doi.org/10.15628/holos.2018.5334

Arpa, Ç., Say, R., Şatiroğlu, N., Bektaş, S., Yürüm, Y. & Genç, Ö. (2000). Heavy metal removal from aquatic systems by northern Anatolian smectites. Turkish Journal of Chemistry, v. 24, n. 1, p. 209-215. Disponível em: https://journals.tubitak.gov.tr/chem/vol24/iss2/12

Azimi, A., Azari, A., Rezakazemi, M., et al. (2017). Removal of heavy metals from industrial wastewaters: A review. ChemBioEng Reviews, v. 4, n. 1, p. 37-59, Feb.

https://doi.org/.1002/cben.201600010

Babel, S. & Kurniawan, T. A. (2004). Cr (VI) removal from synthetic wastewater using shell charcoal and commercial activated carbon modified with oxidizing agents

and/or chitosan. Chemosphere, v. 54, n. 7, p. 951-967. https://doi.org/10.1016/j.chemosphere.2003.10.001

Barbosa, C. D. E. S. (2011). Utilização de zeólita NH4-Y como adsorvente de bário em água produzida: estudo cinético e termodinâmico. Dissertação de Mestrado,

Universidade Federal de Sergipe, Brasil. Disponível em: https://ri.ufs.br/handle/riufs/6158

Basta, N. T. & Tabatabai, M. A. (1992). Effect of cropping systems on adsorption of metals by soils: III. Competitive adsorption. Soil Science, v. 153, n. 4, p. 331-337.

https://doi.org/10.1097/00010694-199203000-00004

Borges Canelhas, B., De Campos, A., Carneiro Ferreira, D., Carvalho Rocha, V., Poleto, C., De Souza Inácio Gonçalves, J. C., & Sérgio Da Luz, M. (2023). Desenvolvimento e

análise de um método alternativo para remoção de metais potencialmente tóxicos da água empregando materiais sorventes. Holos, v. 39, n. 5.

https://doi.org/10.15628/holos.2023.16377

Castillo, N. A. M. (2017). Single and competitive adsorption of Cd (II) and Pb (II) ions from aqueous solutions onto industrial chili seeds (Capsicum annuum) waste.

Sustainable Environment Research, v. 27, p. 61-69. https://doi.org/10.1016/j.serj.2017.01.004

Chubar, N., Carvalho, J. R. & Correia, M. N. (2004). Cork biomass as biosorbent for Cu (II), Zn (II) and Ni (II). Colloids and Surfaces, v. 230, p. 57-65.

https://doi.org/10.1016/j.colsurfa.2003.09.014

Fontes, M. P. F. & Gomes, P. C. (2003). Simultaneous competitive adsorption of heavy metals by the mineral matrix of tropical soils. Applied Geochemistry, v. 18, p. 795-

https://doi.org/10.1016/S0883-2927(02)00188-9

Jaafar, A., Darchen A., Hamzi, S., Lakbaibi , Z., Driouich , A., Boussaoud, A., Yaacoubi, A. Makhfouk, M. & Mohsine Hachkar , M. (2021). Optimization of cadmium ions

biosorption by fish scale from aqueous solutions using factorial design analysis and Monte Carlo simulation studies. Journal of Environmental Chemical Engineering, v.

, n. 1, p. 104727. https://doi.org/10.1016/j.jece.2020.104727

Jeronimo, G. J., De Lima, G. M., Lima. A. F., Luz, A. M. & Ferreira, D. C. (2019). Remoção de cromo por biossólido: tratamento de efluente de curtume. Revista Gestão &

Sustentabilidade Ambiental, v. 8, n. 1, p. 730-752. https://doi.org/10.19177/rgsa.v8e12019730-752

Ji, G. L. & Li, H. Y. ( 1997). Electrostatic adsorption of cations. Chemistry of Variable Charge Soils. New York: Oxford University Press.

https://doi.org/10.1093/oso/9780195097450.003.0006

Jiang, M., Qi, Y., Liu, H. & Chen, Y. (2018) The role of nanomaterials and nanotechnologies in wastewater treatment: a bibliometric analysis. Nanoscale Research Letters,

v. 13, n. 1, p. 1-13, Aug. 13:233. https://doi.org/10.1186/s11671-018-2649-4

Lakshmi, S., Baker, S., Shivamallu, C., Prasad, A. Syed, A., Veerapur, R., Prasad, K. S., Al-Kheraif, A. A., Divakar, D. D., Elgorban E, A. M. & Prasad, M. N. N. (2021).

Biosorption of oxybenzene using biosorbent prepared by raw wastes of Zea mays and comparative study by using commercially available activated carbon. Saudi

Journal of Biological Sciences, v. 28, p. 3469-3476. https://doi.org/10.1016/j.sjbs.2021.03.012

Mcbride, M. B. (1989) Reactions controlling heavy metal solubility in soils. Advances in Soil Science, v. 10, p. 1-47. https://doi.org/10.1007/978-1-4613-8847-0_1

Pierangeli, M. A. P., Guilherme, L. R. G., Curi, N., Costa, E. T. S., De Lima, J. M., Marques, J. J. G. S. M., & Figueiredo, L. F. P. (2007). Comportamento sortivo, individual e

competitivo de metais pesados em latossolos com mineralogia contrastante. Revista Brasileira de Ciências do Solo, v. 31, n. 4, p. 819-826. https://doi.org/10.1590/S0100-

Reddy, P. M. K., Verma, P. & Subrahmanyam, C. (2016). Bio-waste derived adsorbent material for methylene blue adsorption. Journal of the Taiwan Institute of Chemical

Engineers, v. 58, n. 1, p. 500-508. https://doi.org/10.1016/j.jtice.2015.07.006

Santhosh, C., Nivetha, R., Kollu, P., Srivastava, V., Sillanpää, M., Grace, A. N. & Bhatnagar, A. (2017). Removal of cationic and anionic heavy metals from water by 1D and

D-carbon structures decorated with magnetic nanoparticles. Scientific Reports, v. 7, n. 1, p. 1-11. https://doi.org/10.1038/s41598-017-14461-2

Selatnia, A., Bakhti, M.z., Madani, A., Kertous, L. & Mansouri Y. (2004). Biosorption of Cd²⁺ from aqueous solution by a NaOH-treated bacterial dead Streptomyces

rimosus biomass. Hydrometallurgy, v. 75, n. 1-4, p. 11-24. DOI: https://doi.org/doi:10.1016/j.hydromet.2004.06.005

Singh, V., Ahmed, G., Vedika, S., Kumar, P., Chaturvedi, S. K., Rai , S. N., Emanuel Vamanu, E. & Kumar, A. (2024) Toxic heavy metal ions contamination in water and their

sustainable reduction by eco-friendly methods: isotherms, thermodynamics and kinetics study. Scientific Reports, v. 14, p. 7595. https://doi.org/doi:10.1038/s41598-024-

-3

Sheikh, Z., Amin, M., Khan, N.,Khan, M. N.,Sami, S. K.,Khan, S. B.,Hafeez, I.khan, S. A.,Bakhsh, E. M. & Cheng, C. K. (2021) Potential application of Allium cepa seeds as a

novel biosorbent for efficient biosorption of heavy metal ions from aqueous solution. Chemosphere, v. 279, p. 130545.

https://doi.org/10.1016/j.chemosphere.2021.130545

Tarley, C. R. T. & Arruda, M. A. Z. (2003) Adsorventes naturais: potencialidade e aplicações da esponja natural (Luffa cylindrica) na remoção de chumbo em efluente de

laboratório. Analytica, v. 2, p. 25-31.

Torab-Mostaedii, M., Ghaemi, A. G., Ghassabzadeh, H. & Ghannadi-Maragheh, M. (2011).Removal of strontium and barium from aqueous solutions by adsorption onto

expanded perlite. The Canadian Journal of Chemical Engineering, v. 89, p. 1247. https://doi.org/10.1002/cjce.20486

Wanngah, W. S. & Hanafiah, M. A. K. M. (2008). Adsorption of copper on rubber (Hevea brasiliensis) leaf powder: Kinetics, equilibrium and thermodynamic studies.

Biochemical Engineering Journal, v. 39, p. 521-530. https://doi.org/10.1016/j.bej.2007.11.006

Westrup, J. L. Fritzen, M. B., Souza, A. J., Bedendo, G. C., Nome, F. & Fiedler, H. D. (2005). Sorption and desorption of Cd (II) at the clay particle-water interface and its

relevance to the distribution of metal ions in natural systems. Journal of the Brazilian Chemical Society, v. 16, n. 5, p. 982-987. https://doi.org/10.1590/S0103-

Xie, S. (2024). Biosorption of heavy metal ions from contaminated wastewater: an eco-friendly approach. Green Chemistry Letters and Reviews, v. 17, n. 1. DOI:

1080/17518253.2024.2009647. https://doi.org/10.1080/17518253.2024.2357213

Downloads

Published

2025-05-21

How to Cite

Luz, M. S. da, Canelhas, B. B., Campos, A. de, Ferreira, D. C., Rocha, V. C., Santos, C. E. D. dos, Gonçalves, J. C. de S. I., & Poleto, C. (2025). Optimizing an alternative method to remove Pb2+ and Ba2+ in aqueous solution by using coconut fiber as biosorbent material. Ciência E Natura, 47(esp. 2), e91589. https://doi.org/10.5902/2179460X91589

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

You may also start an advanced similarity search for this article.