Inverse problem solution for microplastic emission source area estimation in MOHID: the Sepetiba Bay case study
DOI:
https://doi.org/10.5902/2179460X91586Keywords:
MOHID, Inverse problem, ContaminantAbstract
Occasionally, contaminants are found on beaches (oil, plastic, etc.), and determining their origin can be challenging. However, the adaptation of computational tools with the capability of mathematical modelling of the motion of Lagrangian tracers can offer a practical and objective solution. In this study, it is presented a solution for the inverse problem of contaminant emission, with a focus on microplastic. For that matter, the computational platform MOHID was used to simulate the movement of Lagrangian tracers along the estuary connecting Sepetiba and Ilha Grande in Rio de Janeiro/Brazil. Two methods for tracing the origin of the particle were used, traditional backtracking, and a mapping method, both based on box and instantaneous emissions. The outputs were analysed and both methods yielded promising results, though additional criteria-based decision was found to be significantly relevant. In addition, it was observed the complex hydrodynamic ruling the particle motion, with significant longitude and latitude parameter sensitivity for a microplastic search. The mapping method observed the advantage of potentially reducing the time dependence of the model, while backtracking showed faster results. At last, the time and detail of each model output showed important differences, reinforcing the necessity for a criteria-based decision over the use of the model. This work contributes as a support tool for microplastic mitigation and cleansing-related activities and can be extrapolated to address other types of litter.
Downloads
References
Abascal, A. J., Castanedo, S., Fernandez, V., Ferrer, M. I., & Medina, R. (2011). Oil spill trajectory forecasting and backtracking using surface currents from high-frequency (HF) radar technology. OCEANS 2011 IEEE - Spain, 1–8. https://doi.org/10.1109/Oceans-Spain.2011.6003575
Allen, C. M. (1982). Numerical simulation of contaminant dispersion in estuary flows. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 381(1780), 179–194. https://doi.org/10.1098/rspa.1982.0064
Alosairi, Y., Al-Salem, S. M., & Al Ragum, A. (2020). Three-dimensional numerical modelling of transport, fate and distribution of microplastics in the northwestern Arabian/Persian Gulf. Marine Pollution Bulletin, 161, 111723. https://doi.org/10.1016/j.marpolbul.2020.111723
Al-Salem, K., Alosairi, Y. Y., & Al-Rashed, A. A. (2017). Development of a Backtracking Numerical Model for Offshore Oil Spills. Journal of Engineering Research, 5(1), Article 1. https://kuwaitjournals.org/jer/index.php/JER/article/view/1447
Aral, M. M., Guan, J., & Maslia, M. L. (2001). Identification of Contaminant Source Location and Release History in Aquifers. Journal of Hydrologic Engineering, 6(3), 225–234. https://doi.org/10.1061/(ASCE)1084-0699(2001)6:3(225)
Atiwesh, G., Mikhael, A., Parrish, C. C., Banoub, J., & Le, T.-A. T. (2021). Environmental impact of bioplastic use: A review. Heliyon, 7(9), e07918. https://doi.org/10.1016/j.heliyon.2021.e07918
Ballent, A., Thomsen, L., Ballent, A., Purser, A., De, P., Mendes, J., Pando, S., & Thomsen, L. (2012). Physical transport properties of marine microplastic pollution Robotic Exploration of Extreme Environments (ROBEX) View project Marine cabled observatory networks for the large-scale ecosystem monitoring View project Physical transport properties of marine microplastic pollution. Biogeosciences Discuss, 9, 18755–18798. https://doi.org/10.5194/bgd-9-18755-2012
Balseiro, C. F., Carracedo, P., Goīmez, B., Leitao, P. C., Montero, P., Naranjo, L., Penabad, E., & Peīrez-Munuzuri, V. (2003). Tracking the Prestige oil spill: An operational experience in simulation at. Weather, 58.
Barros, Y. T. de, Lugon Jr, J., Kalas, F. A., Rodrigues, P. P. G. W., & Silva Neto, A. da. (2021, December 20). Identificação de Trajetórias com Uso das Plataformas MoHid e GRIPP para Aplicações Ambientais. https://doi.org/10.5540/03.2021.008.01.0423
Bennett, A. F. (2002). Inverse Modeling of the Ocean and Atmosphere (1st ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511535895
Booth, A. M., Kubowicz, S., Beegle-Krause, C. J., Skancke, J., Nordam, T., Landsem, E., Throne-Holst, M., & Jahren, S. (2017). Microplastic in global and Norwegian marine environments: Distributions, degradation mechanisms and transport. Report. Available on: https://www.miljodirektoratet.no/globalassets/publikasjoner/m918/m918.pdf
Breivik, Ø., Bekkvik, T. C., Wettre, C., & Ommundsen, A. (2012). BAKTRAK: backtracking drifting objects using an iterative algorithm with a forward trajectory model. Ocean Dynamics, 62(2), 239–252. https://doi.org/10.1007/s10236-011-0496-2
Cedarholm, E. R., Rypina, I. I., Macdonald, A. M., & Yoshida, S. (2019). Investigating Subsurface Pathways of Fukushima Cesium in the Northwest Pacific. Geophysical Research Letters, 46(12), 6821–6829. https://doi.org/10.1029/2019GL082500
Chubarenko, I., Bagaev, A., Zobkov, M., & Esiukova, E. (2016). On some physical and dynamical properties of microplastic particles in marine environment. Marine Pollution Bulletin, 108(1–2), 105–112. https://doi.org/10.1016/j.marpolbul.2016.04.048
Cividanes, M., Aguiar-González, B., Gómez, M., Herrera, A., Martínez, I., Pham, C. K., Pérez, L., & Machín, F. (2024). Lagrangian tracking of long-lasting plastic tags: From lobster fisheries in the USA and Canada to Macaronesia. Marine Pollution Bulletin, 198, 115908. https://doi.org/10.1016/j.marpolbul.2023.115908
Cloux, S., Allen-Perkins, S., de Pablo, H., Garaboa-Paz, D., Montero, P., & Pérez Muñuzuri, V. (2022). Validation of a Lagrangian model for large-scale macroplastic tracer transport using mussel-peg in NW Spain (Ría de Arousa). Science of the Total Environment, 822. https://doi.org/10.1016/j.scitotenv.2022.153338
Courtene-Jones, W., Maddalene, T., James, M. K., Smith, N. S., Youngblood, K., Jambeck, J. R., Earthrowl, S., Delvalle-Borrero, D., Penn, E., & Thompson, R. C. (2021). Source, sea and sink—A holistic approach to understanding plastic pollution in the Southern Caribbean. Science of The Total Environment, 797, 149098. https://doi.org/10.1016/j.scitotenv.2021.149098
Dagestad, K.-F., Röhrs, J., Breivik, Ø., & Ådlandsvik, B. (2018). OpenDrift v1.0: A generic framework for trajectory modelling. Geoscientific Model Development, 11(4), 1405–1420. https://doi.org/10.5194/gmd-11-1405-2018
Dobler, D., Huck, T., Maes, C., Grima, N., Blanke, B., Martinez, E., & Ardhuin, F. (2019). Large impact of Stokes drift on the fate of surface floating debris in the South Indian Basin. Marine Pollution Bulletin, 148, 202–209. https://doi.org/10.1016/j.marpolbul.2019.07.057
El-Sherif, D. M., Eloffy, M. G., Elmesery, A., Abouzid, M., Gad, M., El-Seedi, H. R., Brinkmann, M., Wang, K., & Al Naggar, Y. (2022). Environmental risk, toxicity, and biodegradation of polyethylene: A review. Environmental Science and Pollution Research, 29(54), 81166–81182. https://doi.org/10.1007/S11356-022-23382-1/TABLES/6
Galgani, F., Brien, A. S., Weis, J., Ioakeimidis, C., Schuyler, Q., Makarenko, I., Griffiths, H., Bondareff, J., Vethaak, D., Deidun, A., Sobral, P., Topouzelis, K., Vlahos, P., Lana, F., Hassellov, M., Gerigny, O., Arsonina, B., Ambulkar, A., Azzaro, M., & Bebianno, M. J. (2021). Are litter, plastic and microplastic quantities increasing in the ocean? Microplastics and Nanoplastics, 1(1), 2. https://doi.org/10.1186/s43591-020-00002-8
Jalón-Rojas, I., Romero-Ramírez, A., Fauquembergue, K., Rossignol, L., Cachot, J., Sous, D., & Morin, B. (2022). Effects of Biofilms and Particle Physical Properties on the Rising and Settling Velocities of Microplastic Fibers and Sheets. Environmental Science & Technology, 56(12), 8114–8123. https://doi.org/10.1021/acs.est.2c01302
Jalón-Rojas, I., Wang, X. H., & Fredj, E. (2019). A 3D numerical model to Track Marine Plastic Debris (TrackMPD): Sensitivity of microplastic trajectories and fates to particle dynamical properties and physical processes. Marine Pollution Bulletin, 141, 256–272. https://doi.org/10.1016/j.marpolbul.2019.02.052
Kantha, L. H., & Clayson, C. A. (2000). Numerical Models of Oceans and Oceanic Processes (1st ed.). Academic Press.
Lammoglia, T., & Souza Filho, C. R. de. (2015). Chronology and backtracking of oil slick trajectory to source in offshore environments using ultraspectral to multispectral remotely sensed data. C, 39, 113–119. https://doi.org/10.1016/j.jag.2015.03.007
Liubartseva, S., Coppini, G., Lecci, R., & Creti, S. (2016). Regional approach to modeling the transport of floating plastic debris in the Adriatic Sea. Marine Pollution Bulletin, 103(1–2), 115–127. https://doi.org/10.1016/j.marpolbul.2015.12.031
Lugon, J., Silva Neto, A. J., & Santana, C. C. (2009). A hybrid approach with artificial neural networks, Levenberg–Marquardt and simulated annealing methods for the solution of gas–liquid adsorption inverse problems. Inverse Problems in Science and Engineering, 17(1), 85–96. https://doi.org/10.1080/17415970802082922
Lugon Jr, J., Kalas, F. de A., Rodrigues, P. P. G. W., Jeveaux, J. L., Neto, H. G., Juliano, M. M., & da Silva Neto, A. J. (2019). Lagrangian Trajectory Simulation of Floating Objects in the State of São Paulo Coastal Region. Defect and Diffusion Forum, 396, 42–49. https://doi.org/10.4028/www.scientific.net/DDF.396.42
Lyard, F., Lefevre, F., Letellier, T., & Francis, O. (2006). Modelling the global ocean tides: Modern insights from {FES2004}. Ocean Dynamics, 56(5), 394–415. https://doi.org/10.1007/s10236-006-0086-x
Mansour, N., & El‐Fakih, K. (1999). Simulated {Annealing} and {Genetic} {Algorithms} for {Optimal} {Regression} {Testing}. Journal of Software Maintenance: Research and Practice, 11(1), 19–34. https://doi.org/10.1002/(SICI)1096-908X(199901/02)11:1<19::AID-SMR182>3.0.CO;2-M
Mateus, M., & Neves, R. (2013). Ocean modelling for coastal management–Case Studies with MOHID. IST Press Http://Www. Mohid. Com/Books/2013OceanModellingMOHID. Pd.
National Centers For Environmental Prediction/National Weather Service/NOAA. (2015). NCEP GFS 0.25 Degree Global Forecast Grids Historical Archive (p. 109.074 TB) [WMO_GRIB2,WMO_GRIB2]. UCAR/NCAR - Research Data Archive. https://doi.org/10.5065/D65D8PWK
Oceans, G. B. C. of the. (2023). GEBCO_2023 Grid. GEBCO. https://www.gebco.net/data_and_products/gridded_bathymetry_data/GEBCO_2023/
Pablo, H., Sobrinho, J., Garcia, M., Campuzano, F., Juliano, M., & Neves, R. (2019). Validation of the 3D-MOHID Hydrodynamic Model for the Tagus Coastal Area. Water, 11(8), 1713. https://doi.org/10.3390/w11081713
Richter, M. (2020). Inverse Problems. Springer International Publishing. https://doi.org/10.1007/978-3-030-59317-9
Rodrigues, P. P. G. W. (2012). Descrição do MOHID / MARETEC (1st ed.). Essentia Editora. http://essentiaeditora.iff.edu.br/index.php/livros/article/view/2174
Rodrigues, S. K., Machado, W., Barreira, J., & Vinzón, S. (2023). Historical Trends of Trace Metals in the Sepetiba Bay Sediments: Pollution Indexes, Fluxes and Inventories. https://doi.org/10.21203/rs.3.rs-3393671/v1
Santos, A. L. F. dos, Pontes, L., Peixoto, R. dos S., Rosman, P. A., & Rosman, P. C. C. (2018). Projeto Baías do Brasil—Baías de Ilha Grande e Sepetiba, Rio de Janeiro. Relatório Descritivo. Universidade Federal do Rio de Janeiro (UFRJ). http://www.baiasdobrasil.coppe.ufrj.br/assets/relatorios/rel_ilhagrande_sepetiba.html
Semcesen, P. O., & Wells, M. G. (2021). Biofilm growth on buoyant microplastics leads to changes in settling rates: Implications for microplastic retention in the Great Lakes. Marine Pollution Bulletin, 170, 112573. https://doi.org/10.1016/j.marpolbul.2021.112573
Shang, Q., Fang, H., Zhao, H., He, G., & Cui, Z. (2014). Biofilm effects on size gradation, drag coefficient and settling velocity of sediment particles. International Journal of Sediment Research, 29(4), 471–480. https://doi.org/10.1016/S1001-6279(14)60060-3
Souza, N. G. S. de, Lugon Jr, J., Yamasaki, E., Kyriakides, I., & Silva Neto, A. J. da. (2021). OTIMIZAÇÃO DO RASTREAMENTO DE DERRAMAMENTO DE ÓLEO E REDUÇÃO SISTEMÁTICA DA ÁREA DA REGIÃO DE PESQUISA: A PLATAFORMA GRIPP. In Universidade do Estado do Rio de Janeiro (Ed.), X Congresso sobre Planeamento e Gestão das Zonas Costeiras dos Países de Expressão Portuguesa. Universidade do Estado do Rio de Janeiro.
Souza, N. G. S. de, Lugon Jr., J., Yamasaki, E. N., Kyriakides, I., & Neto, A. J. S. (2023). An assessment of relative potential impacts to Cyprus’ shoreline due to oil spills in the Eastern Mediterranean Sea. Revista de Gestão Costeira Integrada, 23(1), 29–42. https://doi.org/10.5894/rgci-n499
Souza, N. G. S. de, Lugon Junior, J., Yamasaki, E., Kyriakides, I., & da Silva Neto, A. J. (2021). Parameter sensitivity study and water property influence: An evaluation of the determining factors on oil drifting effect. Revista Cereus, 13(1), 1595–1604. https://doi.org/10.18605/2175-7275/cereus.v13n1p186-198
Souza, N., Lugon Jr, J., & Silva Neto, A. J. D. (2023). Vertical mixing strategies in the Opendrift platform: Analytical solution and Random Walk scheme. Scientia Plena, 19(11). https://doi.org/10.14808/sci.plena.2023.119904
Spagnol, S., Wolanski, E., Deleersnijder, E., Brinkman, R., McAllister, F., Cushman-Roisin, B., & Hanert, E. (2002). An error frequently made in the evaluation of advective transport in two-dimensional Lagrangian models of advection- diffusion in coral reef waters. Marine Ecology Progress Series, 235, 299–302. https://doi.org/10.3354/meps235299
Suneel, V., Ciappa, A., & Vethamony, P. (2016). Backtrack modeling to locate the origin of tar balls depositing along the west coast of India. Science of The Total Environment, 569–570, 31–39. https://doi.org/10.1016/j.scitotenv.2016.06.101
Taghavy, A., Pennell, K. D., & Abriola, L. M. (2015). Modeling coupled nanoparticle aggregation and transport in porous media: A Lagrangian approach. Journal of Contaminant Hydrology, 172, 48–60. https://doi.org/10.1016/j.jconhyd.2014.10.012
Tang, L., Feng, J.-C., Li, C., Liang, J., Zhang, S., & Yang, Z. (2023). Global occurrence, drivers, and environmental risks of microplastics in marine environments. Journal of Environmental Management, 329, 116961. https://doi.org/10.1016/j.jenvman.2022.116961
Villarreal, M. R. (2005). Marine Turbulence: Theories, Observations and Models: Coupling of the GOTM turbulence module to some three-dimensional ocean models. Cambridge University Press.
Wang, J., & Hood, R. R. (2021). Modeling the Origin of the Particulate Organic Matter Flux to the Hypoxic Zone of Chesapeake Bay in Early Summer. Estuaries and Coasts, 44(3), 672–688. https://doi.org/10.1007/s12237-020-00806-0
Wekerle, C., Krumpen, T., Dinter, T., Von Appen, W.-J., Iversen, M. H., & Salter, I. (2018). Properties of Sediment Trap Catchment Areas in Fram Strait: Results From Lagrangian Modeling and Remote Sensing. Frontiers in Marine Science, 5, 407. https://doi.org/10.3389/fmars.2018.00407
Wichmann, D., Delandmeter, P., Dijkstra, H. A., & Van Sebille, E. (2019). Mixing of passive tracers at the ocean surface and its implications for plastic transport modelling. Environmental Research Communications, 1(11), 115001. https://doi.org/10.1088/2515-7620/ab4e77
Zhu, Z., Waterman, D. M., & Garcia, M. H. (2018). Modeling the transport of oil–particle aggregates resulting from an oil spill in a freshwater environment. Environmental Fluid Mechanics, 18(4), 967–984. https://doi.org/10.1007/s10652-018-9581-0
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ciência e Natura

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.


