Inverse problem solution for microplastic emission source area estimation in MOHID: the Sepetiba Bay case study

Authors

DOI:

https://doi.org/10.5902/2179460X91586

Keywords:

MOHID, Inverse problem, Contaminant

Abstract

Occasionally, contaminants are found on beaches (oil, plastic, etc.), and determining their origin can be challenging. However, the adaptation of computational tools with the capability of mathematical modelling of the motion of Lagrangian tracers can offer a practical and objective solution. In this study, it is presented a solution for the inverse problem of contaminant emission, with a focus on microplastic. For that matter, the computational platform MOHID was used to simulate the movement of Lagrangian tracers along the estuary connecting Sepetiba and Ilha Grande in Rio de Janeiro/Brazil. Two methods for tracing the origin of the particle were used, traditional backtracking, and a mapping method, both based on box and instantaneous emissions. The outputs were analysed and both methods yielded promising results, though additional criteria-based decision was found to be significantly relevant. In addition, it was observed the complex hydrodynamic ruling the particle motion, with significant longitude and latitude parameter sensitivity for a microplastic search. The mapping method observed the advantage of potentially reducing the time dependence of the model, while backtracking showed faster results. At last, the time and detail of each model output showed important differences, reinforcing the necessity for a criteria-based decision over the use of the model. This work contributes as a support tool for microplastic mitigation and cleansing-related activities and can be extrapolated to address other types of litter.

Downloads

Download data is not yet available.

Author Biographies

Nikolas Gomes Silveira de Souza, Instituto Federal Fluminense

Master's degree in environmental engineering.

Jader Lugon Junior, Instituto Federal Fluminense

PhD in Computer Computational Modelling.

Alexandre Macedo Fernandes, Universidade do Estado do Rio de Janeiro

PhD in Physical Oceanography.

Ramiro Joaquim de Jesus Neves, University of Lisbon

PhD in Physical Oceanography.

Antônio José da Silva Neto, Universidade do Estado do Rio de Janeiro

PhD in Mechanical Engineering.

References

Abascal, A. J., Castanedo, S., Fernandez, V., Ferrer, M. I., & Medina, R. (2011). Oil spill trajectory forecasting and backtracking using surface currents from high-frequency (HF) radar technology. OCEANS 2011 IEEE - Spain, 1–8. https://doi.org/10.1109/Oceans-Spain.2011.6003575

Allen, C. M. (1982). Numerical simulation of contaminant dispersion in estuary flows. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 381(1780), 179–194. https://doi.org/10.1098/rspa.1982.0064

Alosairi, Y., Al-Salem, S. M., & Al Ragum, A. (2020). Three-dimensional numerical modelling of transport, fate and distribution of microplastics in the northwestern Arabian/Persian Gulf. Marine Pollution Bulletin, 161, 111723. https://doi.org/10.1016/j.marpolbul.2020.111723

Al-Salem, K., Alosairi, Y. Y., & Al-Rashed, A. A. (2017). Development of a Backtracking Numerical Model for Offshore Oil Spills. Journal of Engineering Research, 5(1), Article 1. https://kuwaitjournals.org/jer/index.php/JER/article/view/1447

Aral, M. M., Guan, J., & Maslia, M. L. (2001). Identification of Contaminant Source Location and Release History in Aquifers. Journal of Hydrologic Engineering, 6(3), 225–234. https://doi.org/10.1061/(ASCE)1084-0699(2001)6:3(225)

Atiwesh, G., Mikhael, A., Parrish, C. C., Banoub, J., & Le, T.-A. T. (2021). Environmental impact of bioplastic use: A review. Heliyon, 7(9), e07918. https://doi.org/10.1016/j.heliyon.2021.e07918

Ballent, A., Thomsen, L., Ballent, A., Purser, A., De, P., Mendes, J., Pando, S., & Thomsen, L. (2012). Physical transport properties of marine microplastic pollution Robotic Exploration of Extreme Environments (ROBEX) View project Marine cabled observatory networks for the large-scale ecosystem monitoring View project Physical transport properties of marine microplastic pollution. Biogeosciences Discuss, 9, 18755–18798. https://doi.org/10.5194/bgd-9-18755-2012

Balseiro, C. F., Carracedo, P., Goīmez, B., Leitao, P. C., Montero, P., Naranjo, L., Penabad, E., & Peīrez-Munuzuri, V. (2003). Tracking the Prestige oil spill: An operational experience in simulation at. Weather, 58.

Barros, Y. T. de, Lugon Jr, J., Kalas, F. A., Rodrigues, P. P. G. W., & Silva Neto, A. da. (2021, December 20). Identificação de Trajetórias com Uso das Plataformas MoHid e GRIPP para Aplicações Ambientais. https://doi.org/10.5540/03.2021.008.01.0423

Bennett, A. F. (2002). Inverse Modeling of the Ocean and Atmosphere (1st ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511535895

Booth, A. M., Kubowicz, S., Beegle-Krause, C. J., Skancke, J., Nordam, T., Landsem, E., Throne-Holst, M., & Jahren, S. (2017). Microplastic in global and Norwegian marine environments: Distributions, degradation mechanisms and transport. Report. Available on: https://www.miljodirektoratet.no/globalassets/publikasjoner/m918/m918.pdf

Breivik, Ø., Bekkvik, T. C., Wettre, C., & Ommundsen, A. (2012). BAKTRAK: backtracking drifting objects using an iterative algorithm with a forward trajectory model. Ocean Dynamics, 62(2), 239–252. https://doi.org/10.1007/s10236-011-0496-2

Cedarholm, E. R., Rypina, I. I., Macdonald, A. M., & Yoshida, S. (2019). Investigating Subsurface Pathways of Fukushima Cesium in the Northwest Pacific. Geophysical Research Letters, 46(12), 6821–6829. https://doi.org/10.1029/2019GL082500

Chubarenko, I., Bagaev, A., Zobkov, M., & Esiukova, E. (2016). On some physical and dynamical properties of microplastic particles in marine environment. Marine Pollution Bulletin, 108(1–2), 105–112. https://doi.org/10.1016/j.marpolbul.2016.04.048

Cividanes, M., Aguiar-González, B., Gómez, M., Herrera, A., Martínez, I., Pham, C. K., Pérez, L., & Machín, F. (2024). Lagrangian tracking of long-lasting plastic tags: From lobster fisheries in the USA and Canada to Macaronesia. Marine Pollution Bulletin, 198, 115908. https://doi.org/10.1016/j.marpolbul.2023.115908

Cloux, S., Allen-Perkins, S., de Pablo, H., Garaboa-Paz, D., Montero, P., & Pérez Muñuzuri, V. (2022). Validation of a Lagrangian model for large-scale macroplastic tracer transport using mussel-peg in NW Spain (Ría de Arousa). Science of the Total Environment, 822. https://doi.org/10.1016/j.scitotenv.2022.153338

Courtene-Jones, W., Maddalene, T., James, M. K., Smith, N. S., Youngblood, K., Jambeck, J. R., Earthrowl, S., Delvalle-Borrero, D., Penn, E., & Thompson, R. C. (2021). Source, sea and sink—A holistic approach to understanding plastic pollution in the Southern Caribbean. Science of The Total Environment, 797, 149098. https://doi.org/10.1016/j.scitotenv.2021.149098

Dagestad, K.-F., Röhrs, J., Breivik, Ø., & Ådlandsvik, B. (2018). OpenDrift v1.0: A generic framework for trajectory modelling. Geoscientific Model Development, 11(4), 1405–1420. https://doi.org/10.5194/gmd-11-1405-2018

Dobler, D., Huck, T., Maes, C., Grima, N., Blanke, B., Martinez, E., & Ardhuin, F. (2019). Large impact of Stokes drift on the fate of surface floating debris in the South Indian Basin. Marine Pollution Bulletin, 148, 202–209. https://doi.org/10.1016/j.marpolbul.2019.07.057

El-Sherif, D. M., Eloffy, M. G., Elmesery, A., Abouzid, M., Gad, M., El-Seedi, H. R., Brinkmann, M., Wang, K., & Al Naggar, Y. (2022). Environmental risk, toxicity, and biodegradation of polyethylene: A review. Environmental Science and Pollution Research, 29(54), 81166–81182. https://doi.org/10.1007/S11356-022-23382-1/TABLES/6

Galgani, F., Brien, A. S., Weis, J., Ioakeimidis, C., Schuyler, Q., Makarenko, I., Griffiths, H., Bondareff, J., Vethaak, D., Deidun, A., Sobral, P., Topouzelis, K., Vlahos, P., Lana, F., Hassellov, M., Gerigny, O., Arsonina, B., Ambulkar, A., Azzaro, M., & Bebianno, M. J. (2021). Are litter, plastic and microplastic quantities increasing in the ocean? Microplastics and Nanoplastics, 1(1), 2. https://doi.org/10.1186/s43591-020-00002-8

Jalón-Rojas, I., Romero-Ramírez, A., Fauquembergue, K., Rossignol, L., Cachot, J., Sous, D., & Morin, B. (2022). Effects of Biofilms and Particle Physical Properties on the Rising and Settling Velocities of Microplastic Fibers and Sheets. Environmental Science & Technology, 56(12), 8114–8123. https://doi.org/10.1021/acs.est.2c01302

Jalón-Rojas, I., Wang, X. H., & Fredj, E. (2019). A 3D numerical model to Track Marine Plastic Debris (TrackMPD): Sensitivity of microplastic trajectories and fates to particle dynamical properties and physical processes. Marine Pollution Bulletin, 141, 256–272. https://doi.org/10.1016/j.marpolbul.2019.02.052

Kantha, L. H., & Clayson, C. A. (2000). Numerical Models of Oceans and Oceanic Processes (1st ed.). Academic Press.

Lammoglia, T., & Souza Filho, C. R. de. (2015). Chronology and backtracking of oil slick trajectory to source in offshore environments using ultraspectral to multispectral remotely sensed data. C, 39, 113–119. https://doi.org/10.1016/j.jag.2015.03.007

Liubartseva, S., Coppini, G., Lecci, R., & Creti, S. (2016). Regional approach to modeling the transport of floating plastic debris in the Adriatic Sea. Marine Pollution Bulletin, 103(1–2), 115–127. https://doi.org/10.1016/j.marpolbul.2015.12.031

Lugon, J., Silva Neto, A. J., & Santana, C. C. (2009). A hybrid approach with artificial neural networks, Levenberg–Marquardt and simulated annealing methods for the solution of gas–liquid adsorption inverse problems. Inverse Problems in Science and Engineering, 17(1), 85–96. https://doi.org/10.1080/17415970802082922

Lugon Jr, J., Kalas, F. de A., Rodrigues, P. P. G. W., Jeveaux, J. L., Neto, H. G., Juliano, M. M., & da Silva Neto, A. J. (2019). Lagrangian Trajectory Simulation of Floating Objects in the State of São Paulo Coastal Region. Defect and Diffusion Forum, 396, 42–49. https://doi.org/10.4028/www.scientific.net/DDF.396.42

Lyard, F., Lefevre, F., Letellier, T., & Francis, O. (2006). Modelling the global ocean tides: Modern insights from {FES2004}. Ocean Dynamics, 56(5), 394–415. https://doi.org/10.1007/s10236-006-0086-x

Mansour, N., & El‐Fakih, K. (1999). Simulated {Annealing} and {Genetic} {Algorithms} for {Optimal} {Regression} {Testing}. Journal of Software Maintenance: Research and Practice, 11(1), 19–34. https://doi.org/10.1002/(SICI)1096-908X(199901/02)11:1<19::AID-SMR182>3.0.CO;2-M

Mateus, M., & Neves, R. (2013). Ocean modelling for coastal management–Case Studies with MOHID. IST Press Http://Www. Mohid. Com/Books/2013OceanModellingMOHID. Pd.

National Centers For Environmental Prediction/National Weather Service/NOAA. (2015). NCEP GFS 0.25 Degree Global Forecast Grids Historical Archive (p. 109.074 TB) [WMO_GRIB2,WMO_GRIB2]. UCAR/NCAR - Research Data Archive. https://doi.org/10.5065/D65D8PWK

Oceans, G. B. C. of the. (2023). GEBCO_2023 Grid. GEBCO. https://www.gebco.net/data_and_products/gridded_bathymetry_data/GEBCO_2023/

Pablo, H., Sobrinho, J., Garcia, M., Campuzano, F., Juliano, M., & Neves, R. (2019). Validation of the 3D-MOHID Hydrodynamic Model for the Tagus Coastal Area. Water, 11(8), 1713. https://doi.org/10.3390/w11081713

Richter, M. (2020). Inverse Problems. Springer International Publishing. https://doi.org/10.1007/978-3-030-59317-9

Rodrigues, P. P. G. W. (2012). Descrição do MOHID / MARETEC (1st ed.). Essentia Editora. http://essentiaeditora.iff.edu.br/index.php/livros/article/view/2174

Rodrigues, S. K., Machado, W., Barreira, J., & Vinzón, S. (2023). Historical Trends of Trace Metals in the Sepetiba Bay Sediments: Pollution Indexes, Fluxes and Inventories. https://doi.org/10.21203/rs.3.rs-3393671/v1

Santos, A. L. F. dos, Pontes, L., Peixoto, R. dos S., Rosman, P. A., & Rosman, P. C. C. (2018). Projeto Baías do Brasil—Baías de Ilha Grande e Sepetiba, Rio de Janeiro. Relatório Descritivo. Universidade Federal do Rio de Janeiro (UFRJ). http://www.baiasdobrasil.coppe.ufrj.br/assets/relatorios/rel_ilhagrande_sepetiba.html

Semcesen, P. O., & Wells, M. G. (2021). Biofilm growth on buoyant microplastics leads to changes in settling rates: Implications for microplastic retention in the Great Lakes. Marine Pollution Bulletin, 170, 112573. https://doi.org/10.1016/j.marpolbul.2021.112573

Shang, Q., Fang, H., Zhao, H., He, G., & Cui, Z. (2014). Biofilm effects on size gradation, drag coefficient and settling velocity of sediment particles. International Journal of Sediment Research, 29(4), 471–480. https://doi.org/10.1016/S1001-6279(14)60060-3

Souza, N. G. S. de, Lugon Jr, J., Yamasaki, E., Kyriakides, I., & Silva Neto, A. J. da. (2021). OTIMIZAÇÃO DO RASTREAMENTO DE DERRAMAMENTO DE ÓLEO E REDUÇÃO SISTEMÁTICA DA ÁREA DA REGIÃO DE PESQUISA: A PLATAFORMA GRIPP. In Universidade do Estado do Rio de Janeiro (Ed.), X Congresso sobre Planeamento e Gestão das Zonas Costeiras dos Países de Expressão Portuguesa. Universidade do Estado do Rio de Janeiro.

Souza, N. G. S. de, Lugon Jr., J., Yamasaki, E. N., Kyriakides, I., & Neto, A. J. S. (2023). An assessment of relative potential impacts to Cyprus’ shoreline due to oil spills in the Eastern Mediterranean Sea. Revista de Gestão Costeira Integrada, 23(1), 29–42. https://doi.org/10.5894/rgci-n499

Souza, N. G. S. de, Lugon Junior, J., Yamasaki, E., Kyriakides, I., & da Silva Neto, A. J. (2021). Parameter sensitivity study and water property influence: An evaluation of the determining factors on oil drifting effect. Revista Cereus, 13(1), 1595–1604. https://doi.org/10.18605/2175-7275/cereus.v13n1p186-198

Souza, N., Lugon Jr, J., & Silva Neto, A. J. D. (2023). Vertical mixing strategies in the Opendrift platform: Analytical solution and Random Walk scheme. Scientia Plena, 19(11). https://doi.org/10.14808/sci.plena.2023.119904

Spagnol, S., Wolanski, E., Deleersnijder, E., Brinkman, R., McAllister, F., Cushman-Roisin, B., & Hanert, E. (2002). An error frequently made in the evaluation of advective transport in two-dimensional Lagrangian models of advection- diffusion in coral reef waters. Marine Ecology Progress Series, 235, 299–302. https://doi.org/10.3354/meps235299

Suneel, V., Ciappa, A., & Vethamony, P. (2016). Backtrack modeling to locate the origin of tar balls depositing along the west coast of India. Science of The Total Environment, 569–570, 31–39. https://doi.org/10.1016/j.scitotenv.2016.06.101

Taghavy, A., Pennell, K. D., & Abriola, L. M. (2015). Modeling coupled nanoparticle aggregation and transport in porous media: A Lagrangian approach. Journal of Contaminant Hydrology, 172, 48–60. https://doi.org/10.1016/j.jconhyd.2014.10.012

Tang, L., Feng, J.-C., Li, C., Liang, J., Zhang, S., & Yang, Z. (2023). Global occurrence, drivers, and environmental risks of microplastics in marine environments. Journal of Environmental Management, 329, 116961. https://doi.org/10.1016/j.jenvman.2022.116961

Villarreal, M. R. (2005). Marine Turbulence: Theories, Observations and Models: Coupling of the GOTM turbulence module to some three-dimensional ocean models. Cambridge University Press.

Wang, J., & Hood, R. R. (2021). Modeling the Origin of the Particulate Organic Matter Flux to the Hypoxic Zone of Chesapeake Bay in Early Summer. Estuaries and Coasts, 44(3), 672–688. https://doi.org/10.1007/s12237-020-00806-0

Wekerle, C., Krumpen, T., Dinter, T., Von Appen, W.-J., Iversen, M. H., & Salter, I. (2018). Properties of Sediment Trap Catchment Areas in Fram Strait: Results From Lagrangian Modeling and Remote Sensing. Frontiers in Marine Science, 5, 407. https://doi.org/10.3389/fmars.2018.00407

Wichmann, D., Delandmeter, P., Dijkstra, H. A., & Van Sebille, E. (2019). Mixing of passive tracers at the ocean surface and its implications for plastic transport modelling. Environmental Research Communications, 1(11), 115001. https://doi.org/10.1088/2515-7620/ab4e77

Zhu, Z., Waterman, D. M., & Garcia, M. H. (2018). Modeling the transport of oil–particle aggregates resulting from an oil spill in a freshwater environment. Environmental Fluid Mechanics, 18(4), 967–984. https://doi.org/10.1007/s10652-018-9581-0

Downloads

Published

2025-05-21

How to Cite

Souza, N. G. S. de, Lugon Junior, J., Fernandes, A. M., Neves, R. J. de J., & Silva Neto, A. J. da. (2025). Inverse problem solution for microplastic emission source area estimation in MOHID: the Sepetiba Bay case study. Ciência E Natura, 47(esp. 2), e91586. https://doi.org/10.5902/2179460X91586

Most read articles by the same author(s)

1 2 > >>