Solução do problema inverso para a estimativa da área de emissão do microplástico: o estudo de caso da Baía de Sepetiba

Autores

DOI:

https://doi.org/10.5902/2179460X91586

Palavras-chave:

MOHID, Problema inverso, Contaminante

Resumo

Frequentemente, contaminantes são identificados em praias (óleo, plástico etc.) e determinar sua origem é um desafio. No entanto, a adaptação de ferramentas computacionais com capacidade de modelagem do movimento de traçadores Lagrangianos pode oferecer uma solução prática e objetiva. Neste estudo, apresentou-se uma solução para o problema inverso da emissão de um contaminante, focado em microplástico. A plataforma computacional MOHID foi utilizada para simular o movimento de traçadores no estuário entre Sepetiba e Ilha Grande no Rio de Janeiro/Brasil. Dois métodos para rastrear a origem da partícula foram utilizados, backtracking tradicional e um método de mapeamento, ambos baseados em emissões instantâneas e em caixa. Os resultados foram analisados e os métodos apresentaram resultados promissores, embora critérios adicionais para a tomada de decisões tenham se mostrado relevantes. Ademais, observa-se a complexa hidrodinâmica que orienta o movimento das partículas, com significativa sensibilidade nos parâmetros de longitude e latitude para a busca de microplásticos. O método de mapeamento ofereceu possível vantagem em reduzir a dependência temporal do modelo, enquanto o backtracking mostrou resultados mais rápidos. Por fim, o tempo e o detalhe de cada saída do modelo mostraram diferenças importantes, reforçando a necessidade de uma decisão baseada em critérios sobre o uso do modelo. Este trabalho contribui como uma ferramenta de suporte para atividades de mitigação e limpeza relacionadas a microplásticos e pode ser extrapolado para abordar outros tipos de resíduo.

Downloads

Não há dados estatísticos.

Biografia do Autor

Nikolas Gomes Silveira de Souza, Instituto Federal Fluminense

Mestre em Engenharia Ambiental.

Jader Lugon Junior, Instituto Federal Fluminense

Doutor em Modelagem Computacional.

Alexandre Macedo Fernandes, Universidade do Estado do Rio de Janeiro

Doutorado em Oceanografia Física.

Ramiro Joaquim de Jesus Neves, University of Lisbon

Doutorado em Oceanografia Física.

Antônio José da Silva Neto, Universidade do Estado do Rio de Janeiro

Doutor em Engenharia Mecânica.

Referências

Abascal, A. J., Castanedo, S., Fernandez, V., Ferrer, M. I., & Medina, R. (2011). Oil spill trajectory forecasting and backtracking using surface currents from high-frequency (HF) radar technology. OCEANS 2011 IEEE - Spain, 1–8. https://doi.org/10.1109/Oceans-Spain.2011.6003575

Allen, C. M. (1982). Numerical simulation of contaminant dispersion in estuary flows. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 381(1780), 179–194. https://doi.org/10.1098/rspa.1982.0064

Alosairi, Y., Al-Salem, S. M., & Al Ragum, A. (2020). Three-dimensional numerical modelling of transport, fate and distribution of microplastics in the northwestern Arabian/Persian Gulf. Marine Pollution Bulletin, 161, 111723. https://doi.org/10.1016/j.marpolbul.2020.111723

Al-Salem, K., Alosairi, Y. Y., & Al-Rashed, A. A. (2017). Development of a Backtracking Numerical Model for Offshore Oil Spills. Journal of Engineering Research, 5(1), Article 1. https://kuwaitjournals.org/jer/index.php/JER/article/view/1447

Aral, M. M., Guan, J., & Maslia, M. L. (2001). Identification of Contaminant Source Location and Release History in Aquifers. Journal of Hydrologic Engineering, 6(3), 225–234. https://doi.org/10.1061/(ASCE)1084-0699(2001)6:3(225)

Atiwesh, G., Mikhael, A., Parrish, C. C., Banoub, J., & Le, T.-A. T. (2021). Environmental impact of bioplastic use: A review. Heliyon, 7(9), e07918. https://doi.org/10.1016/j.heliyon.2021.e07918

Ballent, A., Thomsen, L., Ballent, A., Purser, A., De, P., Mendes, J., Pando, S., & Thomsen, L. (2012). Physical transport properties of marine microplastic pollution Robotic Exploration of Extreme Environments (ROBEX) View project Marine cabled observatory networks for the large-scale ecosystem monitoring View project Physical transport properties of marine microplastic pollution. Biogeosciences Discuss, 9, 18755–18798. https://doi.org/10.5194/bgd-9-18755-2012

Balseiro, C. F., Carracedo, P., Goīmez, B., Leitao, P. C., Montero, P., Naranjo, L., Penabad, E., & Peīrez-Munuzuri, V. (2003). Tracking the Prestige oil spill: An operational experience in simulation at. Weather, 58.

Barros, Y. T. de, Lugon Jr, J., Kalas, F. A., Rodrigues, P. P. G. W., & Silva Neto, A. da. (2021, December 20). Identificação de Trajetórias com Uso das Plataformas MoHid e GRIPP para Aplicações Ambientais. https://doi.org/10.5540/03.2021.008.01.0423

Bennett, A. F. (2002). Inverse Modeling of the Ocean and Atmosphere (1st ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511535895

Booth, A. M., Kubowicz, S., Beegle-Krause, C. J., Skancke, J., Nordam, T., Landsem, E., Throne-Holst, M., & Jahren, S. (2017). Microplastic in global and Norwegian marine environments: Distributions, degradation mechanisms and transport. Report. Available on: https://www.miljodirektoratet.no/globalassets/publikasjoner/m918/m918.pdf

Breivik, Ø., Bekkvik, T. C., Wettre, C., & Ommundsen, A. (2012). BAKTRAK: backtracking drifting objects using an iterative algorithm with a forward trajectory model. Ocean Dynamics, 62(2), 239–252. https://doi.org/10.1007/s10236-011-0496-2

Cedarholm, E. R., Rypina, I. I., Macdonald, A. M., & Yoshida, S. (2019). Investigating Subsurface Pathways of Fukushima Cesium in the Northwest Pacific. Geophysical Research Letters, 46(12), 6821–6829. https://doi.org/10.1029/2019GL082500

Chubarenko, I., Bagaev, A., Zobkov, M., & Esiukova, E. (2016). On some physical and dynamical properties of microplastic particles in marine environment. Marine Pollution Bulletin, 108(1–2), 105–112. https://doi.org/10.1016/j.marpolbul.2016.04.048

Cividanes, M., Aguiar-González, B., Gómez, M., Herrera, A., Martínez, I., Pham, C. K., Pérez, L., & Machín, F. (2024). Lagrangian tracking of long-lasting plastic tags: From lobster fisheries in the USA and Canada to Macaronesia. Marine Pollution Bulletin, 198, 115908. https://doi.org/10.1016/j.marpolbul.2023.115908

Cloux, S., Allen-Perkins, S., de Pablo, H., Garaboa-Paz, D., Montero, P., & Pérez Muñuzuri, V. (2022). Validation of a Lagrangian model for large-scale macroplastic tracer transport using mussel-peg in NW Spain (Ría de Arousa). Science of the Total Environment, 822. https://doi.org/10.1016/j.scitotenv.2022.153338

Courtene-Jones, W., Maddalene, T., James, M. K., Smith, N. S., Youngblood, K., Jambeck, J. R., Earthrowl, S., Delvalle-Borrero, D., Penn, E., & Thompson, R. C. (2021). Source, sea and sink—A holistic approach to understanding plastic pollution in the Southern Caribbean. Science of The Total Environment, 797, 149098. https://doi.org/10.1016/j.scitotenv.2021.149098

Dagestad, K.-F., Röhrs, J., Breivik, Ø., & Ådlandsvik, B. (2018). OpenDrift v1.0: A generic framework for trajectory modelling. Geoscientific Model Development, 11(4), 1405–1420. https://doi.org/10.5194/gmd-11-1405-2018

Dobler, D., Huck, T., Maes, C., Grima, N., Blanke, B., Martinez, E., & Ardhuin, F. (2019). Large impact of Stokes drift on the fate of surface floating debris in the South Indian Basin. Marine Pollution Bulletin, 148, 202–209. https://doi.org/10.1016/j.marpolbul.2019.07.057

El-Sherif, D. M., Eloffy, M. G., Elmesery, A., Abouzid, M., Gad, M., El-Seedi, H. R., Brinkmann, M., Wang, K., & Al Naggar, Y. (2022). Environmental risk, toxicity, and biodegradation of polyethylene: A review. Environmental Science and Pollution Research, 29(54), 81166–81182. https://doi.org/10.1007/S11356-022-23382-1/TABLES/6

Galgani, F., Brien, A. S., Weis, J., Ioakeimidis, C., Schuyler, Q., Makarenko, I., Griffiths, H., Bondareff, J., Vethaak, D., Deidun, A., Sobral, P., Topouzelis, K., Vlahos, P., Lana, F., Hassellov, M., Gerigny, O., Arsonina, B., Ambulkar, A., Azzaro, M., & Bebianno, M. J. (2021). Are litter, plastic and microplastic quantities increasing in the ocean? Microplastics and Nanoplastics, 1(1), 2. https://doi.org/10.1186/s43591-020-00002-8

Jalón-Rojas, I., Romero-Ramírez, A., Fauquembergue, K., Rossignol, L., Cachot, J., Sous, D., & Morin, B. (2022). Effects of Biofilms and Particle Physical Properties on the Rising and Settling Velocities of Microplastic Fibers and Sheets. Environmental Science & Technology, 56(12), 8114–8123. https://doi.org/10.1021/acs.est.2c01302

Jalón-Rojas, I., Wang, X. H., & Fredj, E. (2019). A 3D numerical model to Track Marine Plastic Debris (TrackMPD): Sensitivity of microplastic trajectories and fates to particle dynamical properties and physical processes. Marine Pollution Bulletin, 141, 256–272. https://doi.org/10.1016/j.marpolbul.2019.02.052

Kantha, L. H., & Clayson, C. A. (2000). Numerical Models of Oceans and Oceanic Processes (1st ed.). Academic Press.

Lammoglia, T., & Souza Filho, C. R. de. (2015). Chronology and backtracking of oil slick trajectory to source in offshore environments using ultraspectral to multispectral remotely sensed data. C, 39, 113–119. https://doi.org/10.1016/j.jag.2015.03.007

Liubartseva, S., Coppini, G., Lecci, R., & Creti, S. (2016). Regional approach to modeling the transport of floating plastic debris in the Adriatic Sea. Marine Pollution Bulletin, 103(1–2), 115–127. https://doi.org/10.1016/j.marpolbul.2015.12.031

Lugon, J., Silva Neto, A. J., & Santana, C. C. (2009). A hybrid approach with artificial neural networks, Levenberg–Marquardt and simulated annealing methods for the solution of gas–liquid adsorption inverse problems. Inverse Problems in Science and Engineering, 17(1), 85–96. https://doi.org/10.1080/17415970802082922

Lugon Jr, J., Kalas, F. de A., Rodrigues, P. P. G. W., Jeveaux, J. L., Neto, H. G., Juliano, M. M., & da Silva Neto, A. J. (2019). Lagrangian Trajectory Simulation of Floating Objects in the State of São Paulo Coastal Region. Defect and Diffusion Forum, 396, 42–49. https://doi.org/10.4028/www.scientific.net/DDF.396.42

Lyard, F., Lefevre, F., Letellier, T., & Francis, O. (2006). Modelling the global ocean tides: Modern insights from {FES2004}. Ocean Dynamics, 56(5), 394–415. https://doi.org/10.1007/s10236-006-0086-x

Mansour, N., & El‐Fakih, K. (1999). Simulated {Annealing} and {Genetic} {Algorithms} for {Optimal} {Regression} {Testing}. Journal of Software Maintenance: Research and Practice, 11(1), 19–34. https://doi.org/10.1002/(SICI)1096-908X(199901/02)11:1<19::AID-SMR182>3.0.CO;2-M

Mateus, M., & Neves, R. (2013). Ocean modelling for coastal management–Case Studies with MOHID. IST Press Http://Www. Mohid. Com/Books/2013OceanModellingMOHID. Pd.

National Centers For Environmental Prediction/National Weather Service/NOAA. (2015). NCEP GFS 0.25 Degree Global Forecast Grids Historical Archive (p. 109.074 TB) [WMO_GRIB2,WMO_GRIB2]. UCAR/NCAR - Research Data Archive. https://doi.org/10.5065/D65D8PWK

Oceans, G. B. C. of the. (2023). GEBCO_2023 Grid. GEBCO. https://www.gebco.net/data_and_products/gridded_bathymetry_data/GEBCO_2023/

Pablo, H., Sobrinho, J., Garcia, M., Campuzano, F., Juliano, M., & Neves, R. (2019). Validation of the 3D-MOHID Hydrodynamic Model for the Tagus Coastal Area. Water, 11(8), 1713. https://doi.org/10.3390/w11081713

Richter, M. (2020). Inverse Problems. Springer International Publishing. https://doi.org/10.1007/978-3-030-59317-9

Rodrigues, P. P. G. W. (2012). Descrição do MOHID / MARETEC (1st ed.). Essentia Editora. http://essentiaeditora.iff.edu.br/index.php/livros/article/view/2174

Rodrigues, S. K., Machado, W., Barreira, J., & Vinzón, S. (2023). Historical Trends of Trace Metals in the Sepetiba Bay Sediments: Pollution Indexes, Fluxes and Inventories. https://doi.org/10.21203/rs.3.rs-3393671/v1

Santos, A. L. F. dos, Pontes, L., Peixoto, R. dos S., Rosman, P. A., & Rosman, P. C. C. (2018). Projeto Baías do Brasil—Baías de Ilha Grande e Sepetiba, Rio de Janeiro. Relatório Descritivo. Universidade Federal do Rio de Janeiro (UFRJ). http://www.baiasdobrasil.coppe.ufrj.br/assets/relatorios/rel_ilhagrande_sepetiba.html

Semcesen, P. O., & Wells, M. G. (2021). Biofilm growth on buoyant microplastics leads to changes in settling rates: Implications for microplastic retention in the Great Lakes. Marine Pollution Bulletin, 170, 112573. https://doi.org/10.1016/j.marpolbul.2021.112573

Shang, Q., Fang, H., Zhao, H., He, G., & Cui, Z. (2014). Biofilm effects on size gradation, drag coefficient and settling velocity of sediment particles. International Journal of Sediment Research, 29(4), 471–480. https://doi.org/10.1016/S1001-6279(14)60060-3

Souza, N. G. S. de, Lugon Jr, J., Yamasaki, E., Kyriakides, I., & Silva Neto, A. J. da. (2021). OTIMIZAÇÃO DO RASTREAMENTO DE DERRAMAMENTO DE ÓLEO E REDUÇÃO SISTEMÁTICA DA ÁREA DA REGIÃO DE PESQUISA: A PLATAFORMA GRIPP. In Universidade do Estado do Rio de Janeiro (Ed.), X Congresso sobre Planeamento e Gestão das Zonas Costeiras dos Países de Expressão Portuguesa. Universidade do Estado do Rio de Janeiro.

Souza, N. G. S. de, Lugon Jr., J., Yamasaki, E. N., Kyriakides, I., & Neto, A. J. S. (2023). An assessment of relative potential impacts to Cyprus’ shoreline due to oil spills in the Eastern Mediterranean Sea. Revista de Gestão Costeira Integrada, 23(1), 29–42. https://doi.org/10.5894/rgci-n499

Souza, N. G. S. de, Lugon Junior, J., Yamasaki, E., Kyriakides, I., & da Silva Neto, A. J. (2021). Parameter sensitivity study and water property influence: An evaluation of the determining factors on oil drifting effect. Revista Cereus, 13(1), 1595–1604. https://doi.org/10.18605/2175-7275/cereus.v13n1p186-198

Souza, N., Lugon Jr, J., & Silva Neto, A. J. D. (2023). Vertical mixing strategies in the Opendrift platform: Analytical solution and Random Walk scheme. Scientia Plena, 19(11). https://doi.org/10.14808/sci.plena.2023.119904

Spagnol, S., Wolanski, E., Deleersnijder, E., Brinkman, R., McAllister, F., Cushman-Roisin, B., & Hanert, E. (2002). An error frequently made in the evaluation of advective transport in two-dimensional Lagrangian models of advection- diffusion in coral reef waters. Marine Ecology Progress Series, 235, 299–302. https://doi.org/10.3354/meps235299

Suneel, V., Ciappa, A., & Vethamony, P. (2016). Backtrack modeling to locate the origin of tar balls depositing along the west coast of India. Science of The Total Environment, 569–570, 31–39. https://doi.org/10.1016/j.scitotenv.2016.06.101

Taghavy, A., Pennell, K. D., & Abriola, L. M. (2015). Modeling coupled nanoparticle aggregation and transport in porous media: A Lagrangian approach. Journal of Contaminant Hydrology, 172, 48–60. https://doi.org/10.1016/j.jconhyd.2014.10.012

Tang, L., Feng, J.-C., Li, C., Liang, J., Zhang, S., & Yang, Z. (2023). Global occurrence, drivers, and environmental risks of microplastics in marine environments. Journal of Environmental Management, 329, 116961. https://doi.org/10.1016/j.jenvman.2022.116961

Villarreal, M. R. (2005). Marine Turbulence: Theories, Observations and Models: Coupling of the GOTM turbulence module to some three-dimensional ocean models. Cambridge University Press.

Wang, J., & Hood, R. R. (2021). Modeling the Origin of the Particulate Organic Matter Flux to the Hypoxic Zone of Chesapeake Bay in Early Summer. Estuaries and Coasts, 44(3), 672–688. https://doi.org/10.1007/s12237-020-00806-0

Wekerle, C., Krumpen, T., Dinter, T., Von Appen, W.-J., Iversen, M. H., & Salter, I. (2018). Properties of Sediment Trap Catchment Areas in Fram Strait: Results From Lagrangian Modeling and Remote Sensing. Frontiers in Marine Science, 5, 407. https://doi.org/10.3389/fmars.2018.00407

Wichmann, D., Delandmeter, P., Dijkstra, H. A., & Van Sebille, E. (2019). Mixing of passive tracers at the ocean surface and its implications for plastic transport modelling. Environmental Research Communications, 1(11), 115001. https://doi.org/10.1088/2515-7620/ab4e77

Zhu, Z., Waterman, D. M., & Garcia, M. H. (2018). Modeling the transport of oil–particle aggregates resulting from an oil spill in a freshwater environment. Environmental Fluid Mechanics, 18(4), 967–984. https://doi.org/10.1007/s10652-018-9581-0

Publicado

2025-05-21

Como Citar

Souza, N. G. S. de, Lugon Junior, J., Fernandes, A. M., Neves, R. J. de J., & Silva Neto, A. J. da. (2025). Solução do problema inverso para a estimativa da área de emissão do microplástico: o estudo de caso da Baía de Sepetiba. Ciência E Natura, 47(esp. 2), e91586. https://doi.org/10.5902/2179460X91586

Artigos mais lidos pelo mesmo(s) autor(es)

<< < 1 2