Conductional heat transfer in magmatic intrusions

Authors

DOI:

https://doi.org/10.5902/2179460X75134

Keywords:

Conduction, Transference, Heat, Sill, Paraná

Abstract

The thermal effect that occurs due to the insertion of igneous intrusions in sedimentary basins has been widely investigated in different geological contexts, either to obtain more precise information about the development of the basin and or for the purpose of exploring and evaluating the mineral resources existing there. We can verify that the knowledge of the thermal gradient is fundamental in studies of heat distribution through means such as the Earth's crust or mantle, as this way, we obtain the thermal evolution of magmatic intrusions and adjacent rocks over geological time. For the present work, the determination of the temperature gradient and consequently the thermal evolution of a 13-meter-thick sill and adjacent rocks located in the Paraná Basin - Irati Formation, was obtained through the use of the one-dimensional heat dispersion model in transient regime of finite time, in which, in the spatial variable the numerical method of finite differences (FDM) is used and in the temporal variable the Euler method. Although in cases of large and thick magmatic bodies or sections that include the terrestrial lithospheric and asthenospheric mantles, the mechanism of convection and radiation has an expressive role in the energy transfer process. However, in most geological situations, conduction is the most important mechanism in the heat distribution process.

Downloads

Download data is not yet available.

Author Biographies

Tamires Bojjis da Costa, Universidade Federal de Pelotas

Masters student in Mathematical Modeling

Marcelo Schramm, Universidade Federal de Pelotas

PhD in Mechanical Engineering

Claudio Zen Petersen, Universidade Federal de Pelotas

PhD in Mechanical Engineering

Fernanda Tumelero, Universidade Federal de Pelotas

Postdoctoral student in Mathematical Modeling

References

Araújo, L. M., Trigüis, J. A., Cerqueira, J. R., Freitas, L. C. S. (2000). The atypical permian petroleum system of the paraná basin, brazil. In: Mello, B. J., M. R. & Katz (ed) Petroleum Systems of South Atlantic Margins, American Association of Petroleum Geologists, vol 73, pp. 377–402.

Barbosa, O., Gomes, F. A. (1958). Pesquisa de Petróleo na Bacia do Rio Corumbataí, Estado de São Paulo. Divisão de Geologia e Mineralogia do DNPM, Boletim 171.

Eiras, J. F., Wanderley Filho, J. R. (2003). Sistemas petrolíferos Ígneo-sedimentares. In: ABPG, Congresso Brasileiro de P&D em Petróleo & Gás, vol 2.

Fjeldskaar, W., Helset, H. M., Johansen, H., Grunnaleite, I., Horstad, I. (2008). Thermal modelling of magmatic intrusions in the gjallar ridge, norwegian sea: implications for vitrinite reflectance and hydrocarbon maturation. Basin Research, 20(1), 143–159.

Galushkin, Y. I. (1997). Thermal effects of igneous intrusions on maturity of organic matter: A possible mechanism of intrusion. Organic Geochemistry, 26(11), 645–658.

Gomes, J. B. P. (1959). Algumas observações sobre as intrusões de diabásio na bacia sedimentar do paraná. Boletim Técnico da Petrobrás, 2, 7–12.

Hanson, R. B. (1995). The hydrodynamics of contact metamorphism. Geological Society of America Bulletin, 107, 595–611.

Hayba, D. O., Ingebritsen, S. E. (1997). Multiphase groundwater flow near cooling plutons. Journal of Geophysical Research, 102, 2235–12,252.

Milani, E. (1997). Evolução tectono-estratigráfica da bacia do paraná e seu relacionamento com ageodinâmica fanerozóica do gondwana sul-ocidental. Doctoral Thesis, Geociências, Instituto de Geociências, Universidade Federal do Rio Grande do Sul. Porto Alegre.

Milani, E., Ramos, V. (1998). Orogenias paleozóicas no domínio sul-ocidental do Gondwana e os ciclos de subsidência da bacia do Paraná. Revista Brasileira de Geociências, 28(4), 473–484.

Milani, E. J., B., F. A., L., S. R. (1994). Bacia do paraná. Boletim de Geociências da Petrobrás, 8(1), 69–82.

Milani, E. J., Melo, J. H. G., Souza, P. A., Fernandes, L. A., França, A. B. (2007). Bacia do Paraná. Boletim de Geociências da Petrobrás, 15(2), 265–287.

Padula, V. T. (1969). Oil-shale of permian irati formation, brazil. AAPG Bulletin, 53(3), 591–602.

Peters, K. E., Simoneit, B. R. T., Brenner, B., Kaplan, I. R. (1978). Vitrinite reflectance–temperature determinations for intruded cretaceous black shale in the eastern atlantic. In: Oltz, D.F. (Ed.), Symposium in Geochemistry: Low Temperature Metamorphism of Kerogen and Clay Minerals, Los Angeles, Ca., p 53–58.

Petri, S., Fúlfaro, V. J. (1983). Geologia do Brasil. Editora da Universidade de São Paulo, São Paulo.

Santos, R. V., Dantas, E. L., Alvarenga, C. J. S., Berdran, F., Guimaraes, E. M., Oliveira, C. G., Marques-Toigo, M., Mendonca Filho, J. G., Anjos, C. W. D., Medeiros, S. R. (2003). Geochemical and thermal effects of basic intrusives rocks on the irati formation - northewestern paraná basin. In: South American Symposium on Isotope Geology, 4, pp. 776–779.

Santos, R. V., Dantas, E. L., de Oliveira, C. G., de Alvarenga, C. J., dos Anjos, C. W., Guimaraes, E. M., Oliveira, F. B. (2009). Geochemical and thermal effects of a basic sill on black shales and limestones of the permian irati formation. Journal of South American Earth Sciences, 28(1), 14–24.

Sant’anna, L. G., Clauer, N., Cordani, U. G., Riccomini, C., Velázquez, V. F., Liewig, N. (2006). Origin and migration timing of hydrothermal fluids in sedimentary rocks of the paraná basin, south america. Chemical Geology, 230, 1–21.

Schneider, R. L., Mühlmann, H., Tommasi, E., Medeiros, R. A., Daemon, R. F., Nogueira, A. A. (1974). Revisão estratigráfica da bacia do paraná. In: CONGRESSO BRASILEIRO DE GEOLOGIA, Porto Alegre, vol 1, pp. 41–65.

Stewart, A. K., Massey, M., Padgett, P. L., Rimmer, S. M., Hower, J. C. (2005). Influence of a basic intrusion on the vitrinite reflectance and chemistry of the springfield. International Journal of Coal Geology, 63, 58–67.

Wang, D., Lu, X., Zhang, X., Xu, S., Hu, W., Wang, L. (2007). Heat-model analysis of wall rocks below a diabase sill in huimin sag, china compared with thermal alteration of mudstone to carbargilite and hornfels and with increase of vitrinite reflectance. Geophysical Research Letters, 34, 1–6.

Wang, D., Lu, X., Xu, S., Hu, W. (2008). Comment on “influence of a basic intrusion on the vitrinite reflectance and chemistry of the springfield (no. 5) coal, harrisburg, illinoi” by stewart et al. (2005). International Journal of Coal Geology, 73, 196–199.

Wang, D., Lu, X., Song, Y., Shao, R., QI, T. (2010). Influence of the temperature dependence of thermal parameters of heat conduction models on the reconstruction of thermal history of igneous-intrusion-bearing basins. Computers & Geosciences, 36, 1339–1344.

Wang, D., Song, Y., Liu, W., Zhao, M., Qi, T. (2011a). Numerical investigation of the effect of volatilization and the supercritical state of pore water on maturation of organic matter in the vicinity of igneous intrusions. International Journal of Coal Geology, 87, 33–40.

Wang, D., Lu, X., Song, Y., Shao, R., QI, T. (2012). The influence of igneous intrusions on the peak temperatures of host rocks: Finite-time emplacement, evaporation, dehydration, and decarbonation. Computers & Geosciences, 38, 99–106.

Wang, K., Lu, X., Chen, M., Ma, Y., Liu, K., Liu, L., Li, X., Hu, W. (2011b). Numerical modelling of the hydrocarbon generation of tertiary source rocks intruded by doleritic sills in the zhanhua depression, bohai bay basin, china. Basin Research, 23, 1–14.

WoldeGabriel, G., Keating, G. N., Valentine, G. A. (1999). Effects of shallow basaltic intrusion into pyroclastic deposits, grants ridge, new mexico, usa. Journal of Volcanology and Geothermal Research, 92, 389–411.

Zálan, P. V., Wolf, S., Conceição, J. C. J., Marques, A., Astolfi, M. A. M., Viera, I. S., Appi, V. T., Zanotto, O. A. (1990). Bacia do Paraná. In: Raja Gabaglia, G. P., Milani, E. J. (Eds) Origem e Evolução de Bacias Sedimentares, Petrobras/SEREC/CEMSUD, Rio de Janeiro, pp. 135–168.

Downloads

Published

2023-12-01

How to Cite

Costa, T. B. da, Schramm, M., Petersen, C. Z., & Tumelero, F. (2023). Conductional heat transfer in magmatic intrusions. Ciência E Natura, 45(esp. 3), e75134. https://doi.org/10.5902/2179460X75134

Most read articles by the same author(s)