Decaimento da turbulência convectiva: uma estimativa do coeficiente de difusão turbulento na camada residual
DOI:
https://doi.org/10.5902/2179460X36901Abstract
In this work is presented a model that describes the decay of the convective turbulent kinetic energy and that estimates the turbulent diffusion coefficient in the Residual Layer. The dynamic equation for energy spectrum function is obtained from Navier-Stokes equation. The terms that describe the inertial transfer of energy, the production or destruction of energy for thermal effect and the molecular dissipation are considered. The inertial transfer of energy is calculated from the Taylor’s statistical diffusion theory. The Heisenberg’s theory that is based on the concept of a kinematic turbulence viscosity to describe the inertial transfer of energy from the big to the small eddies is used. The term that describes the production or destruction of kinetic energy for thermal effect is obtained from the convective similarity theory considering the Pao’s hypothesis. This hypothesis supposes that energy is extracted of the medium flow in a continuous way, allowing do not explicit a scale of time characteristic. The dynamic equations that describe the turbulent flow are only valid in the three-dimensional space. For this reason it was obtained one spectrum 3-D for convective layer from a model proposed by Kristensen, and of a model for the one-dimensional spectra calculated by Degrazia. The turbulent diffusion coefficient is obtained from the Taylor’s statistical and the similarity convective theories. The results obtained in this work are compared with the LES modelDownloads
References
Batchelor, G.K.: 1949, 'The role of big eddies In homogeneous turbulence', Proc. Roy. Soc. A195, 513-532
Batchelor, O.K.: 1959, 'The theory of homogeneous turbulence', monografia de Mecânica e Matemática Aplicada, Cambridge University Press, 197 pp
Degrazia G.A. e Moraes O.L.L.: 1992, 'A model for eddy diffusivity in a stable boundary layer'. Boundary-Layer Meteorol, 58, 205-214
Degrazia G., Anfossi D., Moraes O.L.L. e Trini Castelli S.: 1997, ‘A model for the turbulence parameterization in the residual layer’. AIR POLLUTION V, H. Power, T. Tirabassi e C.A. Brebbia editors, 101-107
Degrazia G.A., Anfossi D., Fraga De Campos Velho H. e Ferrero E.: 1998 ‘A Lagrangian decorrelation time scale for non-homogeneous turbulence’ Boundary-Layer Meteorol., 86, 525-534
Degrazia, G.A. and Anfossi, D.: 1998, ‘Estimation of the Kolmogorov constant Co from classical statistical diffusion theory’, Atmos. Environm., 32, 3611-3614
Hanna S.R: 1981 ‘Lagrangian and Eulerian time-scale i the daytime boundary layer’. J. AppI. Meteor., 20, 242-249
Hinze J.O.: 1975, ‘Turbulence’, Mc Graw Hill, 790 pp
Kaimal J.C. Wyngaard J.C., Izumi Y. e Cote’ O.R.: 1972, ‘Spectral characteristics of surface layer turbulence’ Quart. J.C. Roy. Meteorol. Soc., 98, 563-589
Kim, J. e Mahrt L.: 1992, ‘Simple formulation of turbulent mixing in the stable free atmosphere and nocturnal boundary layer’ Tellus 44A, 381-394
Kristensen, L., Lenschow, D., Kirkegaard, P. e Courtney, M.: 1989, ‘The Spectral Velocity Tensor For Homogeneous Boundary-Layer Turbulence’, Boundary-Layer Meteorol. 47,149-193
Moeng, C. H. e Sullivan P. P.: 1994, ‘A Comparison of Shear- and Buoyancy-Driven Planetary Boundary Layer Flows’, J. Atmos. Sci., 51, 999-1022
Nieuwstadt, F.T.M. e Brost R.A.: 1986, ‘The decay of convective turbulence’, J. Atmos. Sci. 43, 532-546
Pao, Y.H.: 1965, ‘Structure of Turbulent Velocity and Scalar Fields at Large Wavenumbers’, The Physics of Fluids, 8, 1063-1075
Stanisic, M.M.: 1988, ‘The mathematical theory of turbulence’, Berlin Nova York,501pp
Stull, L.B.: 1988, ‘An introduction to Boundary Layer Meteorology’, Kluwer Academic Publishers, Boston, 666 pp.
Downloads
Published
How to Cite
Issue
Section
License
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.