Estimadores de Semivariância: Uma Revisão
DOI:
https://doi.org/10.5902/2179460X21326Keywords:
Geoestatística, Estimador, Semivariância, Robustez, Revisão.Abstract
A Geoestatística é um ramo da estatística responsável pela incorporação e entendimento das dependências espaciais na modelagemde variáveis georreferenciadas. Na busca pelo melhor modelo ajustado, tem-se o desafio de desenvolver e dominar um ferramental
que permita a análise, e quantificação, da variabilidade espacial do fenômeno em estudo por meio de modelagens específicas, para
isso, é comum fazer uso de medidas de correlação espacial como covariância, correlação e, especialmente, semivariância, uma
medida resumo da variabilidade e dependência espacial. É então essencial um bom ajuste do semivariograma, e um estimador
adequado para a semivariância é necessário para este ajuste. Uma vez que a maioria dos métodos de estimação em Geoestatística e
algoritmos de simulação requerem um modelo teórico ajustado a uma semivariância empírica, objetivou-se expor as construções,
deduções e a ideia geral que determina a adequabilidade dos principais estimadores de semivariância a fim de prover a melhor
decisão a ser tomada. Portanto, este texto apresenta uma revisão de oito estimadores de semivariância: Clássico de Matheron,
Robusto de Cressie e Hawkins, das Medianas de Cressie, das Diferenças de Haslett, Altamente Robusto de Genton, Pairwise,
New-1 (MW1) e New-2 (MW2).
Downloads
References
Bickel, P., Lehmann, E. (2012). Descriptive statistics for nonparametric models i. introduction. Em: Selected Works of EL Lehmann, Springer, pp. 465–471.
Cressie, N. (1993). Statistics for spatial data: Wiley series in probability and statistics.
Cressie, N., Hawkins, D. M. (1980). Robust estimation of the variogram: I. Journal of the International Association for Mathematical Geology, 12(2), 115–125.
Cryer, J. D., Kellet, N. (1986). Time series analysis, vol 101.Springer.
Genton, M. (1998). Highly robust variogram estimation. Mathematical Geology, 30(2), 213–221, URL http://link.springer.com/article/10.1023/A: 1021728614555.
Genton, M. G., Rousseeuw, P. J. (1995). The changeof-variance function of m-estimators of scale under general contamination. Journal of computational and applied mathematics, 64(1), 69–80.
Gringarten, E., Deutsch, C. V. (2001). Teacher’s aide variogram interpretation and modeling. Mathematical Geology, 33(4), 507–534.
Hampel, F., Ronchetti, E., Rousseeuw, P. (1986). Robust statistics: the approach based on influence functions. Wiley series in probability and mathematical statistics.
Haslett, J. (1997). On the sample variogram and the sample autocovariance for non-stationary time series. Journal of the Royal Statistical Society: Series D (The Statistician), 46(4), 475–484, URL http://doi.wiley. com/10.1111/1467-9884.00101.
Hodges, J. L., Lehmann, E. L. (1963). Estimates of location based on rank tests. Ann Math Statist, 34(2), 598–611.
Huber, P. J. (2011). Robust Statistical Procedures. Springer.
Huber, P. J., et al. (1964). Robust estimation of a location parameter. The Annals of Mathematical Statistics, 35(1), 73–101.
Isaaks, E. H., Srivastava, R. M. (1989). Applied geostatistics. New York, 21(4), 592, URL http://www.amazon. co.uk/dp/0195050134.
Li, D., Lake, L. (1994). A moving window semivariogram estimator. Water Resources Research, 30(5), 1479–1489.
Matheron, G. (1962). Traité de géostatistique appliquée, vol 14. Editions Technip.
Ramachandran, K. M., Tsokos, C. P. (2009). Mathematical Statistics with Applications. Elsevier.
Rossoni, D. F., Lima, R. R. d., Oliveira, M. S. d. (2014). Proposta e validação de testes bootstrap para detecção
de anisotropia em fenômenos espaciais contínuos (pp. 210-227). Revista da Estatística da Universidade Federal
de Ouro Preto, 3(2).
Rousseeuw, P. J., Croux, C. (1993). Alternatives to the median absolute deviation. Journal of the American Statistical Association, 88(424), 1273–1283, URL http://www.jstor.org/stable/2291267$ delimiter"026E30F$nhttp://www.tandfonline. com/doi/abs/10.1080/01621459.1993.10476408.
Shamos, M. I. (1977). Geometry and statistics: Problems at the interface. Em: In Algorithms and Complexity,
Citeseer.
Teixeira, M. (2013). Comparação entre estimadores de semivariância.
Yang, A. P., Lake, L. (1988). The accuracy of autocorrelation estimates. In Situ;(United States), 12(4)
Downloads
Published
How to Cite
Issue
Section
License
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.