MICROBURST FRONT DETECTION WITH FINITE TIME LYAPUNOV EXPONENTS

Authors

  • Nicasio Barrere Correa Profesor Asistente , (Docente Grado 2 Titular, 40 horas semanales) , Centro Universitario Regional Este - UDeLaR ,Uruguay
  • Cecilia Cabeza Aceto UDeLaR / Universidad de la República
  • Giuliano Demarco Universidade Federal de Santa Maria - UFSM
  • Umberto Rizza Consiglio Nazionale delle Ricerche, Istituto Di Scienze Dell Atmosfera e Del Clima, Lecce.
  • Vagner Anabor Universidade Federal de Santa Maria
  • Franciano Scremin Puhales Universidade Federal de Santa Maria
  • Otávio Costa Acevedo Universidade Federal de Santa Maria

DOI:

https://doi.org/10.5902/2179460X20228

Keywords:

Microburst. Vortex. Finite time Lyapunov exponents. Lagrangian coherent structures.

Abstract

A microburst is a phenomena that occurs in the atmosphere which consist on a very intense downdraft that, after impinging on the ground surface, leads to strongly divergent winds at and just above the ground level. Such winds can reach more than 30 m/s-1 and are associated with high shear forces, representing a serious threat to aircrafts and buildings. The detection and tracking of the front of the microburst expansion at the ground level becomes an important and interesting field for researchers. Previous works show the detection of the vortex core but not for the vortex front. From velocity fields obtained from a LES simulation, we utilize Finite Time Lyapunov Exponents (FTLE) which measures the exponential divergence between particle trajectories. Then we identify manifolds which acts as separatrices of the flow and represent the edge or front of the vortex. By tracking the vortex front we also measure its displacement through time.  Find the front of the vortex using only vorticity and velocity fields is complicated and imprecise. Therefore, the combination of these two methods represents a new approach in this particular problem.

Downloads

Download data is not yet available.

Author Biographies

Nicasio Barrere Correa, Profesor Asistente , (Docente Grado 2 Titular, 40 horas semanales) , Centro Universitario Regional Este - UDeLaR ,Uruguay

Instituto de Física / Facultad de Ciencias - UDeLaR / Universidad de la República / Uruguay

Cecilia Cabeza Aceto, UDeLaR / Universidad de la República

Prof. Agregado de Física Aplicada , (Docente Grado 4 Titular, 40 horas semanales / Dedicación total) , Facultad de Ciencias - UDeLaR , Uruguay

Giuliano Demarco, Universidade Federal de Santa Maria - UFSM

Pós Doutorando no Programa de Pós Graduação em Física (UFSM)

Professor Voluntário no Departamento de Física (UFSM)

Umberto Rizza, Consiglio Nazionale delle Ricerche, Istituto Di Scienze Dell Atmosfera e Del Clima, Lecce.

Pesquisador senior - Consiglio Nazionale delle Ricerche d'Italia.

Vagner Anabor, Universidade Federal de Santa Maria

Professor da Microburst front detection with finite time Lyapunov exponentsUniversidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Física.

Franciano Scremin Puhales, Universidade Federal de Santa Maria

Professor da Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Física.

Otávio Costa Acevedo, Universidade Federal de Santa Maria

Professor da Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Física.

References

Anabor, V., Rizza, U., Nascimento, E. L., Degrazia, G. A. (2011). Large-eddy simulation of a microburst. Atmospheric Chemistry and Physics, 11, 9323 – 9331.

Demarco, G., Barrere, N., Sarasua, G., Marti, A. C., Acevedo, O. C., de Nascimento, E. L., Cabeza, C. (2013). Combined effect of jet impingement and density perturbation forcing on the evolution of laboratory-simulated microbursts. Journal of wind engineering and industrial aerodynamics, 123, 69–76.

Fujita, T. (1985). The downburst, microburst and macroburst, satellite and mesometereology research (smrp). Department of geophysical science, 36, 75–86.

Fujita, T. (1990). Downbursts: metereological features and wind field characteristics. Journal of wind engineering and industrial aerodynamics.

Haller, G. (2000). Finding finite-time invariant manifolds in two-dimendional velocity ffields. Chaos, 10, 1–10.

Haller, G., Yuan, G. (2000). Lagrangian coherent structures and mixing in two-dimendional turbulence. Physica D, 147, 352–370.

Holmes, J., Oliver, S. (2000). An empirical model of a downburst. Engineering structures, 22, 1167–1172.

Lundgren, T., Yao, J., Mansour, N. (2007). Microburst modelling and scalling. Journal of Fluid Mechanics, 239, 461–488.

Moeng, C. H. (1984). A large-eddy-simulation model for the study of planetary boundary layer turbulence. Journal of Atmospheric Science, 41(13), 2052–2062.

Orf, L. G., Anderson, J. R., Straka, J. M. (1996). A three-dimensional numerical analysis of colliding microburst outflow dynamics. Journal of Atmospheric Sciences, 53, 2490–2511.

Proctor, F. (1988). Numerical simulation of an isolated microburst part i:dynamics and structure. Journal of Atmospheric Sciences, 45, 3137–3160.

Proctor, F. (1989). Numerical simulation of an isolated microburst part ii:sensitivity experiments. Journal of Atmospheric Sciences, 46, 2143–2165.

Shadden, S. (2006). A dynamical systems approach to unsteady systems. Tese de Doutorado, California Institute of Technology.

Shadden, S., Leiken, F., Marsden, J. (2005). Definition and properties of lagrangian coherent structures from finite-time lyapunov exponents in two-dimendional a periodic flows. Physica D, 212, 271–304.

Shadden, S., Dabiri, J., Marsden, J. (2006). Lagrangian analysis of fluid transport in empirical vortex ring flows. Physics of fluids.

Sullivan, P. P., McWilliams, J. C., Moeng, C. H. (1994). A subgrid-scale model for large-eddy simulations of planetary boundary-layer flows. Boundary Layer Meteorology, 71(3), 247–276.

Published

2016-07-20

How to Cite

Correa, N. B., Aceto, C. C., Demarco, G., Rizza, U., Anabor, V., Puhales, F. S., & Acevedo, O. C. (2016). MICROBURST FRONT DETECTION WITH FINITE TIME LYAPUNOV EXPONENTS. Ciência E Natura, 38, 266–269. https://doi.org/10.5902/2179460X20228

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 7 8 9 > >>