Numerical and observational study of an event of decrease in the total ozone column of tropical origin in Southern Brazil




, Coluna total de ozônio, Intrusão estratosférica, Depleção de ozônio, Transporte tropical


A depletion event of 11% of the total ozone column over South Brazil was analyzed from observational data and numerical simulations. The meteorological fields resulting from the simulation did not show the presence of subtropical or polar jets over the study region. The real and simulated soundings showed the dryness at high and low tropospheric levels, pointing a stratospheric intrusion. The total ozone column values from ERA-5 reanalyses showed the maintenance of a region with low total ozone values in tropical latitudes and its advance over the study region, before and during the depletion event. The isentropic retro-trajectories of air parcels at different levels, obtained with the Hybrid Single Lagrangian Integrated Trajectory Model (HYSPLIT), confirmed the zonal transport from the tropical region over Southern Brazil. A combination of a cyclonic circulation at the 850 K stratospheric isentropic level and an intense anticyclonic circulation at the 440 K tropospheric level, over the depletion region, was identified as responsible for the tropopause lift and horizontal transport of ozone-rich air out of the column.


Download data is not yet available.

Author Biographies

Lissette Guzmán, Universidade Federal de Santa Maria, Santa Maria, RS

Doutoranda em Meteorologia, pelo Programa de Pós-Graduação em Meteorologia da Universidade Federal de Santa Maria (UFSM).

Vagner Anabor, Universidade Federal de Santa Maria, Santa Maria, RS

Professsor do Programa de Pós-Graduação em Meteorologia da Universidade Federal de Santa Maria (UFSM).

Luiz Angelo Steffenel, Université de Reims Champagne Ardenne, Reims

Professor na Université de Reims Champagne Ardenne.

Damaris Kirsch Pinheiro, Universidade Federal de Santa Maria, Santa Maria, RS

Professsora do Programa de Pós-Graduação em Meteorologia da Universidade Federal de Santa Maria (UFSM).


Akritidis, D., Katragkou, E., Zanis, P., Pytharoulis, I., Melas, D., Flemming, J., Inness, A., Clark, H., Plu, M., Eskes, H. (2018). A deep stratosphere-to-troposphere ozone transport event over Europe simulated in CAMS global and regional forecast systems: analysis and evaluation. Atmospheric Chemistry and Physics, 18 (20), 15, 515–15, 534. Disponível em:

Bittencourt, G. D. (2018). Influência da dinâmica atmosférica durante eventos de Efeito Secundário do Buraco de Ozônio Antártico sobre o Sul do Brasil. Mestrado em Meteorologia, Universidade Federal de Santa Maria, Santa Maria.

Bittencourt, G. D., Bresciani, C., Kirsch Pinheiro, D., Bageston, J. V., Schuch, N. J., Bencherif, H., Leme, N. P., Vaz Peres, L. (2018). A major event of antarctic ozone hole influence in southern brazil inoctober 2016: an analysis of tropospheric and stratospheric dynamics. Annales Geophysicae, 36 (2), 415–424. Disponível em:

Bresciani, C., Bittencourt, G. D., Bageston, J. V., Pinheiro, D. K., Schuch, N. J., Bencherif, H., Leme, N. P., Peres, L. V. (2018). Report of a large depletion in the ozone layer over southern brazil and uruguay by using multi-instrumental data. Annales Geophysicae, 36 (2), 405–413. Disponível em:

Casiccia, C., Zamorano, F., A, H. (2008). Erythemal irradiance at the magellan’s region and antarctic ozone hole 1999-2005.

Atmósfera, 21.

CPTEC/INPE (2019). Division of Satellites and Environmental Systems. Disponível em: Acesso em: 15 jul. 2019.

Farman, J., Gardiner, B., Shanklin, J. (1985). Large Losses of Total Ozone in Antarctica Reveal Seasonal ClOx/NOx Interaction.

Nature, 315, 207–210.

Fu, Q., Solomon, S., A. Pahlavan, H., Lin, P. (2019). Observed changes in brewer-dobson circulation for 1980-2018. Environmental Research Letters.

Guarnieri, R., Padilha, L., Guarnieri, F., Echer, E., Makita, K., Pinheiro, D., Schuch, A., Boeira, L., Schuch, N. (2004). A study of the anticorrelations between ozone and uv-b radiation using linear and exponential fits in southern brazil. Advances in Space Research, 34, 764–768.

Holton, R. J., Haynes, P., Mcintyre, M., R. Douglass, A., Rood, R., Pfister, L. (1995). Stratosphere-troposphere exchange. Reviews of Geophysics - REV GEOPHYS, 33.

Hong, S. Y., Noh, Y., Dudhia, J. (2006). A new vertical diffusion package with an explicit treatment of entrainment processes.

Mon Wea Rev, 134, 2318–2341.

James, P., Peters, D. (2002). The lagrangian structure of ozone mini-holes and potential vorticity anomalies in the northern hemisphere. Annales Geophysicae, 20.

Kain, J. (2004). The Kain-Fritsch convective parameterization: An update. J Appl Meteor, 43, 170–181.

Kirchhoff, V., Schuch, N., Pinheiro, D., M. Harris, J. (1996). Evidence for an ozone hole perturbation at 30 South. Atmospheric Environment, 30, 1481–1488.

Laat, A., van der A, R., Allaart, M., van Weele, M., Benitez, G., Casiccia, C., Leme, N., Quel, E., Salvador, J., Wolfram, E. (2010). Extreme sunbathing: Three weeks of small total o3 columns and high uv radiation over the southern tip of south america during the 2009 antarctic o3 hole season. Geophysical Research Letters, 37.

Lin, Y. L., Farley, R., Orville, H. (1983). Bulk Parameterization of the Snow Field in a Cloud Model. JClimate Appl Met, 22, 1065–1092.

London, J. (1985). The observed distribution of ozone and its variations. Stratospheric Ozone and Man, 1.

M. B. Dobson, G., N. Harrison, D., Lawrence, J. (1929). Measurements of the Amount of Ozone in the Earth’s Atmosphere and Its Relation to Other Geophysical Conditions. Part III. Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences, 122, 456–486.

Marchand, M., Bekki, S., Pazmino, A., Lefèvre, F., Godin-Beekmann, S., Hauchecorne, A. (2005). Model Simulations of the Impact of the 2002 Antarctic Ozone Hole on the Midlatitudes. JOURNAL OF THE ATMOSPHERIC SCIENCES, 62, 871–884.

Morel, B., Bencherif, H., Keckhut, P., Portafaix, T., Hauchecorne, A., Baldy, S. (2005). Fine-scale study of a thick stratospheric ozone lamina at the edge of the southern subtropical barrier: 2. numerical simulations with coupled dynamics models. Journal of Geophysical Research, 110.

NWS (2000). NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999. Disponível em: http://dx.

Oliveira, L. d. S. (2016). Troca estratosfera-troposfera e sua influência no conteúdo de ozônio sobre a região central do rio grande do sul. Mestrado em meteorologia, Universidade Federal de Santa Maria, Santa Maria.

Orte, P., Wolfram, E., Salvador, J., Mizuno, A., Bègue, N., Bencherif, H., Bali, J., DElia, R., Pazmiño, A., Godin-Beekmann, S., Ohyama, H., Quiroga, J. (2019). Analysis of a southern sub-polar short-term ozone variation event using a millimetre-wave radiometer. Annales Geophysicae, 37, 613–629.

Peres, L., Pinheiro, D., Steffenel, L. A., Mendes, D., Bageston, J., Bittencourt, G., Schuch, A., Anabor, V., Leme, N., Schuch, N., Bencherif, H. (2019). Monitoramento de longo prazo e climatologia de campos estratosféricos quando da ocorrência dos eventos de influência do buraco de ozônio antártico sobre o sul do brasil. Revista Brasileira de Meteorologia, 34, 151–163.

Salby, M. (1996). Fundamentals of Atmospheric Physics, Volume 61, vol 61.

Semane, N., Bencherif, H., Morel, B., Hauchecorne, A., Diab, R. D. (2006). An unusual stratospheric ozone decrease in the southern hemisphere subtropics linked to isentropic air-mass transport as observed over irene (25.5 s, 28.1 e) in mid-may 2002. Atmospheric Chemistry and Physics, 6 (7), 1927–1936. Disponível em:

Service, C. C. C. (2019). Copernicus Climate Change Service (2017): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Disponível em:!/home. Acesso em 15 julho 2019.

Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Barker, D., Duda, M., Huang, X., Powers, J., Wang, W. (2008). A Description of the Advanced Research WRF Version 3. Disponível em: DOI: 10.5065/D68S4MVH.

Solomon, S., Ivy, D., Kinnison, D., Mills, M., Neely, R., Schmidt, A. (2016). Emergence of healing in the antarctic ozone layer.

Science, 353.

Stein, A., Draxler, R., Rolph, G., Stunder, B., Cohen, M., Ngan, F. (2016). NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96, 150504130527,006.

Stohl, A., Wernli, H., James, P., Bourqui, M., Forster, C., A. Liniger, M., Seibert, P., Sprenger, M. (2003). A New Perspective of Stratosphere Troposphere Exchange. Bulletin of The American Meteorological Society - BULL AMER METEOROL SOC, 84.

W. Brewer, A. (1949). Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Quarterly Journal of the Royal Meteorological Society, 75, 351 – 363.



How to Cite

Guzmán, L., Anabor, V., Steffenel, L. A., & Pinheiro, D. K. (2020). Numerical and observational study of an event of decrease in the total ozone column of tropical origin in Southern Brazil. Ciência E Natura, 42, e5.



Short and Very Short Term Forecast

Most read articles by the same author(s)

1 2 3 > >>