Relationship between electricity demand and temperature: methodology for load forecasting using weather numerical simulation

Authors

DOI:

https://doi.org/10.5902/2179460X55304

Keywords:

Temperature, Load, WRF

Abstract

This work aims to study the relationship between the demand for electricity and the temperature for the concession area of a given electricity distributor, in order to develop a representative load forecast method for this area. For this purpose, a weather numerical simulation is made using the regional meteorological model Weather Research and Forecasting (WRF) for the study area and, from that, the average temperature in the distributor's concession area is calculated, considering the number of consumers in each city that makes up that same area, called Average Temperature Weighted by the Number of Consumers (TMPNC). With this, a temperature index is obtained that effectively describes the influence of temperature on the load, since a greater weight is given to temperatures in cities where there are more consumers. Thus, it is observed that the relationship between the load and the TMPNC differs depending on the month, day of the week and time of day, due to different causes related to human activity, socioeconomic factors, weather conditions, etc. However, a load forecast method is developed based on a regression algorithm that uses the load and TMPNC data as input, returning regression functions that describe the load behavior as a function of the TMPNC. The forecasting method developed resulted in load estimates with an mean absolute percentage error of 1.8%.

Downloads

Download data is not yet available.

Author Biographies

Kauan Vargas Casarin, Universidade Federal de Santa Maria, Santa Maria, RS

Doutorando em Meteorologia, pelo Programa de Pós-Graduação em Meteorologia da Universidade Federal de Santa Maria (UFSM). Formação: Graduação em Meteorologia pela UFSM (2015) e Mestrado em Meteorologia pela UFSM (2018). Possui experiência em Meteorologia Sinótica, Meteorologia de Mesoescala, Modelagem Atmosférica e Previsão do Tempo, desenvolvendo pesquisas relacionadas à Sistemas Convectivos de Mesoescala e sobre aspectos meteorológicos relacionados a demanda de energia elétrica e previsão de carga.

Vagner Anabor, Universidade Federal de Santa Maria, Santa Maria, RS

Graduado em Meteorologia pela Universidade Federal de Pelotas (2001), Mestrado em Sensoriamento Remoto pela Universidade Federal do Rio Grande do Sul (2004) e Doutorado em Física pela Universidade Federal de Santa Maria (2008). Atualmente é professor nos cursos de Graduação e Pós-Graduação em Meteorologia da Universidade Federal de Santa Maria. Desenvolve pesquisas em Meteorologia Sinótica, Tempestades Severas, Modelagem Atmosférica Regional, Sensoriamento Remoto, Meteorologia de Mesoescala, Sistemas Convectivos de Mesoescala e o desenvolvimento de produtos para análise e previsão de Tempo.

Franciano Scremin Puhales, Universidade Federal de Santa Maria, Santa Maria, RS

Possui graduação em Física - Licenciatura Plena pela Universidade Federal de Santa Maria (2006), graduação em Física - Bacharelado pela Universidade Federal de Santa Maria (2010), graduação em Meteorologia - Bacharelado pela Universidade Federal de Santa Maria (2008), mestrado em Física pela Universidade Federal de Santa Maria (2008) e doutorado em Física pela Universidade Federal de Santa Maria (2011). Atualmente é docente do Departamento de Física da Universidade Federal de Santa Maria. Tem experiência na área de Física e Meteorologia, com ênfase em modelagem numérica: simulação dos grandes turbilhões (LES), modelagem em escala regional com WRF (Weather Research and Forecasting) e abordagem teórico-experimental em escoamentos turbulentos.

Everson Dal Piva, Universidade Federal de Santa Maria, Santa Maria, RS

Possui graduação em Meteorologia pela Universidade Federal de Pelotas (1999), mestrado (2001) e doutorado (2005) em Meteorologia pelo Instituto Nacional de Pesquisas Espaciais. Foi pesquisador-bolsista na Universidade Federal de Santa Maria e bolsista PCI no Centro Regional Sul (CRS/INPE) em Santa Maria. Atualmente e professor de nivel superior na Universidade Federal de Santa Maria. Tem experiência na área de Geociências, com ênfase em Meteorologia Sinótica e Dinâmica, atuando principalmente nos seguintes temas: ciclones extratropicais e tropicais, sistemas convectivos de mesoescala e formação de nevoeiros, com uso frequente de modelos regionais, em especial o BRAMS.

References

ALI-TOUDERT, F.; MAYER, H. Effects of asymmetry, galleries, overhanging façades and vegetation on thermal comfort in urban street canyons. Solar Energy, v. 81, n. 6, p. 742 – 754, 2007. ISSN 0038-092X. Disponível em: http://www.sciencedirect.com/science/article/pii/S0038092X06002623. Acesso em: 14 jan. 2018.

ANDRADE, G.; SANT’ANNA, A. Estimativa do impacto das variações de temperatura sobre o consumo residencial de energia elétrica no rio de janeiro. 09 2013.

COHEN, P.; POTCHTER, O.; MATZARAKIS, A. Human thermal perception of coastal mediterranean outdoor urban environments. Applied Geography, v. 37, p. 1 – 10, 2013. ISSN 0143-6228. Disponível em: http://www.sciencedirect.com/science/article/pii/S0143622812001142. Acesso em: 14 jan. 2018.

CANCELO, J. R.; ESPASA, A. Modelling and forecasting daily series of electricity demand. Investigaciones Económicas, v. 20, p. 359–376, 1996. ISSN 0210-1521. Disponível em: http://hdl.handle.net/10016/3120. Acesso em: 14 jan. 2018.

CHEN, L.; NG, E. Outdoor thermal comfort and outdoor activities: A review of research in the past decade. Cities, v. 29, n. 2, p. 118 – 125, 2012. ISSN 0264-2751. Disponível em: http://www.sciencedirect.com/science/article/pii/S0264275111001053. . Acesso em: 14 jan. 2018

COLOMBO, A. F.; ETKIN, D.; KARNEY, B. W. Climate variability and the frequency of extreme temperature events for nine sites across Canada: Implications for power usage. Journal of Climate, v. 12, n. 8, p. 2490–2502, 1999. Acesso em: 14 jan. 2018.

DAVIS, LUCAS W. AND GERTLER, PAUL J. Contribution of air conditioning adoption to future energy use under global warming. National Academy of Sciences, v. 112, n. 19, p. 5962-5967, 2015. Disponível em: https://www.pnas.org/content/112/19/5962. Acesso em: 6 jun. 2020.

ESR, I. ESRI Shapefile Technical Description. [S.l.], jul. 1998. Disponível em: http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf. Acesso em: 14 jan. 2018.

FENG, Y.; RYAN, S. M. Day-ahead hourly electricity load modeling by functional regression. Applied Energy, v. 170, p. 455 – 465, 2016. ISSN 0306-2619. Disponível em: http://www.sciencedirect.com/science/article/pii/S0306261916302744. Acesso em: 14 jan. 2018.

FRIEDRICH, L., & AFSHARI, A. (2015). Short-term Forecasting of the Abu Dhabi Electricity Load Using Multiple Weather Variables. Energy Procedia, 75, 3014–3026. doi: 10.1016/j.egypro.2015.07.616

GUO, Y. et al. Hourly cooling load forecasting using time-indexed arx models with two-stage weighted least squares regression. Energy Conversion and Management, v. 80, p. 46 – 53, 2014. ISSN 0196-8904. Disponível em: http://www.sciencedirect.com/science/article/pii/S0196890414000259. Acesso em: 14 jan. 2018.

HEKKENBERG, M. et al. Indications for a changing electricity demand pattern: The temperature dependence of electricity demand in the netherlands. Energy Policy, v. 37, p. 1542–1551, 04 2009.

HERNÁNDEZ, L. et al. Artificial neural networks for short-term load forecasting in microgrids environment. Energy, v. 75, p. 252 – 264, 2014. ISSN 0360-5442. Disponível em: http://www.sciencedirect.com/science/article/pii/S0360544214008871.

HIPPERT, H.; BUNN, D.; SOUZA, R. Large neural networks for electricity load forecasting: Are they overfitted? International Journal of Forecasting, v. 21, n. 3, p. 425 – 434, 2005. ISSN 0169-2070. Disponível em: http://www.sciencedirect.com/science/article/pii/S016920700400130X. Acesso em: 14 jan. 2018.

HONG, S.-Y.; DUDHIA, J.; CHEN, S.-H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Monthly Weather Review, v. 132, n. 1, p. 103–120, 2004. Disponível em: https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

HONG, S.-Y.; NOH, Y.; DUDHIA, J. A new vertical diffusion package with an explicit treatment of entrainment processes. v. 134, 09 2006.

HONG, T. et al. Modeling and forecasting hourly electric load by multiple linear regression with interactions. In: IEEE PES General Meeting. [S.l.: s.n.], 2010. p. 1–8. ISSN 1932-5517.

HUO, L. et al. Short-term load forecasting based on the method of genetic programming. In: 2007 International Conference on Mechatronics and Automation. [S.l.: s.n.], 2007. p. 839–843. ISSN 2152-7431.

ISAAC, M., & VAN VUUREN, D. P. (2009). Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy, 37(2), 507–521. doi: 10.1016/j.enpol.2008.09.051

KAIN, J. S. The kain–fritsch convective parameterization: An update. Journal of Applied Meteorology, v. 43, n. 1, p. 170–181, 2004. Acesso em 14 jan. 2018. Disponível em: https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

KHATOON, S., IBRAHEEM, SINGH, A. K., & PRITI. (2014). Effects of various factors on electric load forecasting: An overview. 2014 6th IEEE Power India International Conference (PIICON). doi:10.1109/poweri.2014

LEE, K. Y.; DU, S. Short-term load forecasting using semigroup based system-type neural network. In: 2009 15th International Conference on Intelligent System Applications to Power Systems. [S.l.: s.n.], 2009. p. 1–6.

LIAO, G.-C.; TSAO, T.-P. Application of a fuzzy neural network combined with a chaos genetic algorithm and simulated annealing to short-term load forecasting. IEEE Transactions on Evolutionary Computation, v. 10, n. 3, p. 330–340, June 2006. ISSN 1089-778X.

LUSIS, P., KHALILPOUR, K. R., ANDREW, L., & LIEBMAN, A. (2017). Short-term residential load forecasting: Impact of calendar effects and forecast granularity. Applied Energy, 205, 654–669. doi: 10.1016/j.apenergy.2017.07.114

MORNA ISAAC AND DETLEF P. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy, v. 37, n. 2, p. 507–521, 2009. Disponível em: http://www.sciencedirect.com/science/article/pii/S0301421508005168. Acesso em: 24 jun. 2020.

NAHID-AL-MASOOD et al. Temperature sensitivity forecasting of electrical load. In: 2010 4th International Power Engineering and Optimization Conference (PEOCO). [S.l.: s.n.], 2010. p. 244–248.

MIRANDA, R. F. C. Análise da Inserção de Geração Distribuída de Energia Solar Fotovoltaica no Setor Residencial Brasileiro. 2013. 291f. Dissertação (Mestrado) - Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia (COPPE), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ.

MORAL-CARCEDO, J.; VICÉNS-OTERO, J. Modelling the non-linear response of Spanish electricity demand to temperature variations. Energy Economics, v. 27, n. 3, p. 477 – 494, 2005. ISSN 0140-9883. Disponível em: http://www.sciencedirect.com/science/article/pii/S0140988305000174. Acesso em: 14 jan. 2018.

PASTERNAK A. D. Global Energy Futures and Human Development: A Framework for Analysis, 2000. Disponível em: http://www.terrawatts.com/HDI.pdf. Acesso em: 14 jul. 2020.

PREDICTION NATIONAL WEATHER SERVICE, N. U. D. o. C. National Centers for E. NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999. Boulder CO: Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, 2000. Disponível em: https://doi.org/10.5065/D6M043C6.

RAY, P.; SEN, S.; BARISAL, A. K. Hybrid methodology for short-term load forecasting. In: 2014 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). [S.l.: s.n.], 2014. p. 1–6.

RAZA, M. Q. et al. An intelligent hybrid short-term load forecasting model for smart power grids. Sustainable Cities and Society, v. 31, p. 264 – 275, 2017. ISSN 2210-6707. Disponível em: http://www.sciencedirect.com/science/article/pii/S2210670716307466. Acesso em: 14 jan. 2018.

RAZA, M. Q.; KHOSRAVI, A. A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renewable and Sustainable Energy Reviews, v. 50, p. 1352 – 1372, 2015. ISSN 1364-0321. Disponível em: http://www.sciencedirect.com/science/article/pii/S1364032115003354. Acesso em: 14 jan. 2018.

RINGWOOD J.V., B. D. . M. F. Forecasting electricity demand on short, medium and long time scales using neural networks. v. 31, p. 129–147, 05 2001. ISSN 1573-0409

SAILOR, D. J. Urban heat islands, opportunities and challenges for mitigation and adaptation. In: North American Urban Heat Island Summit. Toronto: [s.n.], 2002.

SANT’ANNA, B. Planejamento e expansão dos sistemas de distribuição – Metodologia para consideração de pequenas centrais hidrelétricas. 2009. 75f. Dissertação (Mestrado em Engenharia Elétrica), Universidade Federal de Minas Gerais, Belo Horizonte, MG.

SCAPIN FRANCESCO APADULA, M. B. M. M. S. High-resolution temperature fields to evaluate the response of italian electricity demand to meteorological variables: an example of climate service for the energy sector. Theoretical and Applied Climatology, v. 125, p. 729–742, Jul 2016. ISSN 0177-798X.

SKAMAROCK, W. C, et al. A description of the Advanced Research WRF Version 3. National Center for Atmospheric Research (NCAR). Boulder, Colorado (EUA), p. 125. 2008.

WANG, J.; ZHOU, Y.; CHEN, X. Electricity load forecasting based on support vector machines and simulated annealing particle swarm optimization algorithm. In: 2007 IEEE International Conference on Automation and Logistics. [S.l.: s.n.], 2007. p. 2836–2841. ISSN 2161-8151.

YAN, Y. Y. Climate and residential electricity consumption in hong kong. Energy, v. 23, n. 1, p. 17 – 20, 1998. ISSN 0360-5442. Disponível em: http://www.sciencedirect.com/science/article/pii/S0360544297000534. Acesso em: 14 jan. 2018.

YUN, K. et al. Building hourly thermal load prediction using an indexed arx model. Energy and Buildings, v. 54, p. 225 – 233, 2012. ISSN 0378-7788. Disponível em: http://www.sciencedirect.com/science/article/pii/S0378778812003933. Acesso em: 14 jan. 2018.

ZHENG, T.; GIRGIS, A. A.; MAKRAM, E. B. A hybrid wavelet-kalman filter method for load forecasting. Electric Power Systems Research, v. 54, n. 1, p. 11 – 17, 2000. ISSN 0378-7796. Disponível em: http://www.sciencedirect.com/science/article/pii/S0378779699000632. Acesso em 14 jan. 2018.

Published

2020-09-25

How to Cite

Casarin, K. V., Anabor, V., Puhales, F. S., & Piva, E. D. (2020). Relationship between electricity demand and temperature: methodology for load forecasting using weather numerical simulation. Ciência E Natura, 42, e4. https://doi.org/10.5902/2179460X55304

Issue

Section

Wind, Photovoltaic, Geothermal, Hydraulic, Other Energies

Most read articles by the same author(s)

1 2 3 4 5 > >>