Use of the counter-gradient term based on Taylor's theory and its influence on precipitation simulation in the Amazon region

Authors

DOI:

https://doi.org/10.5902/2179460X87610

Keywords:

Counter-gradient, Planetary Boundary Layer, G.I. Taylor

Abstract

The Planetary Boundary Layer (PBL) turbulence is parameterized in the Brazilian Global Atmospheric Model (BAM) using G. I. Taylor’s statistical theory, through a PBL parameterization together with the Counter-Gradient term gamma. The use of the gamma generated good results simulating precipitation in the Amazon region.

Downloads

Download data is not yet available.

Author Biographies

Eduardo Rohde Eras, National Institute for Space Research

.

Haroldo Fraga de Campos Velho, National Institute for Space Research

Senior Researcher A-III (LABAC: Laboratory for Computing and Applied Mathematics), PhD in Mechanical Engineering.

Paulo Yoshio Kubota, National Institute for Space Research

Meteorology professor at the National Institute for Space Research, PhD in Meteorology.

References

Bretherton, C. S., Park, S. (2009). A new moist turbulence parameterization in the community atmosphere model. Journal of Climate, 22(12), 3422–3448.

Campos Velho, H. F., Holtslag, A. M., Degrazia, G., Pielke Sr, R. (1998). New parameterizations in rams for vertical turbulent fluxes. Relatório Técnico, Colorado State University, Fort Colins (CO), USA.

Cuijpers, J. W. M., Holtslag, A. A. M. (1998). Impact of skewness and nonlocal effects on scalar and buoyancy fluxes in convective boundary layers. Journal of the Atmospheric Sciences, 55(2), 151–162.

Deardorff, J. W. (1966). The counter-gradient heat flux in the lower atmosphere and in the laboratory. Journal of the Atmospheric Sciences, 23(5), 503–506.

Degrazia, G., Anfossi, D., Carvalho, J., Mangia, C., Tirabassi, T., Velho, H. C. (2000). Turbulence parameterisation for pbl dispersion models in all stability conditions. Atmospheric environment, 34(21), 3575–3583.

Eras, E. R., Kubota, P. Y., de Campos Velho, H. F. (2023). Teoria estatística da turbulência aplicada ao modelo global bam-inpe. Ciência e Natura, 45(esp. 2), e78,815–e78,815.

Figueroa, S. N., Bonatti, J. P., Kubota, P. Y., Grell, G. A., Morrison, H., Barros, S. R., Fernandez, J. P., Ramirez, E., Siqueira, L., Luzia, G., et al. (2016). The brazilian global atmospheric model (bam): performance for tropical rainfall forecasting and sensitivity to convective scheme and horizontal resolution. Weather and Forecasting, 31(5), 1547–1572.

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., et al. (2018). Era5 hourly data on single levels from 1959 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 10(10.24381).

Holtslag, A. A. M., Boville, B. A. (1993). Local versus nonlocal boundary-layer diffusion in a global climate model. Journal of climate, 6(10), 1825–1842.

Holtslag, A. A. M., De Bruijn, E. I. F., Pan, H. L. (1990). A high resolution air mass transformation model for short-range weather forecasting. Monthly Weather Review, 118(8), 1561–1575.

Mellor, G. L., Yamada, T. (1982). Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics, 20(4), 851–875.

Troen, I. B., Mahrt, L. (1986). A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Boundary-Layer Meteorology, 37(1-2), 129–148.

Welter, M. E. S. (2006). Modelagem do termo de contra gradiente na parametrização de turbulência no modelo atmosférico brams. Mestrado em ciência da computação, Instituto Nacional de Pesquisas Espaciais, São José dos Campos.

Published

2024-12-16

How to Cite

Eras, E. R., Velho, H. F. de C., & Kubota, P. Y. (2024). Use of the counter-gradient term based on Taylor’s theory and its influence on precipitation simulation in the Amazon region. Ciência E Natura, 46(esp. 2), e87610. https://doi.org/10.5902/2179460X87610

Most read articles by the same author(s)

1 2 > >>