Neural network for seasonal climate precipitation prediction on the Brazil

Authors

DOI:

https://doi.org/10.5902/2179460X45358

Keywords:

Precipitation, Seasonal climate prediction, Self-configured neural network

Abstract

Precipitation is the hardest meteorological field to be predicted. An approach based on and optimal neural network is applied for climate precipitation prediction for the Brazil. A self-configurated multi-layer perceptron neural network (MLP-NN) is used as a predictor tool. The MLP-NN topology is found by solving an optimization problem by the Multi-Particle Collision Algorithm (MPCA). Prediction for Summer and Winter seasons are shown. The neural forecasting is evaluated by using the reanalysis data from the NCEP/NCAR and data from satellite GPCP (Global Precipitation Climatology Project -- monthly precipitation dataset).

Downloads

Download data is not yet available.

Author Biographies

Juliana Aparecida Anochi, Instituto Nacional de Pesquisas Espaciais, Cachoeira Paulista, SP

Graduated in Computer Science, master's degree in Applied Computing from the National Institute for Space Research (INPE) and doctorate in Applied Computing from the INPE on the theme of climate precipitation prediction by a neural network

Haroldo Fraga de Campos Velho, Instituto Nacional de Pesquisas Espaciais, São Jose dos Campos, SP

Graduated in Chemical Engineering from the Pontifica Universidade Católica do Rio Grande do Sul, M.Sc. on Nuclear Engineering and D.Sc. on Mechanical Engineering from the Universidade  Federal do Rio Grande do Sul. Currently, he is a senior researcher from the National Institute of Space Research (INPE, Brazil)

References

ADLER, R. F.; HUFFMAN, G. J.; CHANG, A.; FERRARO, R.; XIE, P.-P.; JANOWIAK, J.; RUDOLF, B.; SCHNEIDER, U.; CURTIS, S.; BOLVIN, D. et al. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). Journal of hydrometeorology, v. 4, n. 6, p. 1147-1167, 2003.

ANOCHI, J.; SAMBATTI, S.; LUZ, E.; CAMPOS VELHO, H. F. New learning strategy for supervised neural network: MPCA meta-heuristic approach. In: 1st BRICS Countries & 11th CBIC Brazilian Congress on Computational Intelligence. Location: Recife, Brasil. Porto de Galinhas Beach. 2013.

ANOCHI, J.; SILVA, J. Uso de redes neurais artificiais e teoria de conjuntos aproximativos no estudo de padrões climáticos sazonais. Learning and Nonlinear Models, v. 7, p. 83–91, 2009.

ANOCHI, J. A.; CAMPOS VELHO, H. F. Optimization of feedforward neural network by multiple particle collision algorithm. In: IEEE. 2014 IEEE Symposium on Foundations of Computational Intelligence (FOCI), p. 128–134, 2014.

BABOO, S. S.; SHEREEF, I. K. An efficient weather forecasting system using artificial neural network. International journal of environmental science and development, v. 1, n. 4, p. 321, 2010.

ECHEVARRÍA, L. C.; SANTIAGO, O. L.; NETO, A. J.S. Aplicación de los algoritmos evolución diferencial y colisión de partículas al diagnóstico de fallos en sistemas industriales. Investigación Operacional, v. 33, n. 2, p. 160–172, 2014.

HAYKIN, S. Neural networks: a comprehensive foundation. Prentice Hall PTR, 1994.

KALNAY, E.; KANAMITSU, M.; KISTLER, R.; COLLINS, W.; DEAVEN, D.; GANDIN, L.; IREDELL, M.; SAHA, S.; WHITE, G.; WOOLLEN, J. et al. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American meteorological Society, American Meteorological Society, v. 77, n. 3, p. 437–472, 1996.

LUZ, E. F. P. da; BECCENERI, J. C.; CAMPOS VELHO, H. F. A new multi-particle collision algorithm for optimization in a high performance environment. Journal of Computational Interdisciplinary Sciences, v. 1, n. 1, p. 3–10, 2008.

RUIVO, H. M.; CAMPOS VELHO, H. F. de; SAMPAIO, G.; RAMOS, F. M. Analysis of extreme precipitation events using a novel data mining approach. American Journal of Environmental Engineering, v. 5, n. 1A, p. 96–105, 2015.

SACCO, W. F.; OLIVEIRA, C. R. D. A new stochastic optimization algorithm based on a particle collision metaheuristic. Proceedings of 6th WCSMO, 2005.

SAMBATTI, S. B. M.; ANOCHI, J. A.; LUZ, E. F. P.; CARVALHO, A. R.; SHIGUEMORI, E. H.; CAMPOS VELHO, H. C. Automatic configuration for neural network applied to atmospheric temperature profile identification. In: 3rd International Conference on International Conference on Engineering Optimization, p. 1–9, 2012.

SOUSA, W. d. S.; SOUSA, F. d. A. de. Rede neural artificial aplicada à previsão de vazão da bacia hidrográfica do rio piancó. Revista Brasileira de Engenharia Agricola e Ambiental-Agriambi, v. 14, n. 2, 2010.

TORRES, R. H.; LUZ, E.; CAMPOS VELHO, H. C. Multi-particle collision algorithm for solving an inverse radiative problem. In: Integral Methods in Science and Engineering. Birkhäuser, Cham, 2015. p. 309-319.

Downloads

Published

2020-08-28

How to Cite

Anochi, J. A., & Velho, H. F. de C. (2020). Neural network for seasonal climate precipitation prediction on the Brazil. Ciência E Natura, 42, e15. https://doi.org/10.5902/2179460X45358

Most read articles by the same author(s)