Statistical theory of turbulence applied to the BAM-INPE global model

Authors

DOI:

https://doi.org/10.5902/2179460X78815

Keywords:

Atmospheric turbulence, Parameterization from the Taylor's theory, BAM model

Abstract

Statistical theory of turbulence from the G. I. Taylor's is employed as a reference to parameterize the turbulence in the global atmospheric circulation model BAM (Brazilian Global Atmospheric Model). The BAM model is operationally used to generate numerical weather forecast data by INPE. Simulation for the BAM model with parameterization based on Taylor's theory are compared against the results obtained with the Holtslag-Boville (1993) parameterization. A good performance by using a new parameterization is obtained from the results.

Downloads

Download data is not yet available.

Author Biographies

Eduardo Rohde Eras, National Institute for Space Research

PhD Student in Applied Computing at the National Institute for Space Research, Master in Applied Computing

Paulo Yoshio Kubota, National Institute for Space Research

Lecturer in meteorology at the National Institute for Space Research, PhD in Meteorology.

Haroldo Fraga de Campos Velho, National Institute for Space Research

Senior Researcher at the National Institute for Space Research, PhD in Mechanical Engineering.

References

CAMPOS VELHO, H. F.: Modelagem Matemática em Turbulência Atmosférica. Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC): Notas em Matemática Aplicada - No. 48, 2010. Disponível em: https://proceedings.science/series/23/proceedings_non_indexed/53

DEGRAZIA, G. A.; ANFOSSI, D.; CARVALHO, J. C.; MANGIA, C.; TIRABASSI, T; CAMPOS VELHO, H. F.; Turbulence parameterization for PBL dispersion models in all stability conditions. Atmospheric Environment, v. 34, p. 3575-3583, 2000.

DUEBEN, P. D.; BAUER, P. Challenges and design choices for global weather and climate models based on machine learning. Geoscientific Model Development, p. 3999-4009, 2018.

FIGUEROA, S. N.; BONATTI, J. P.; KUBOTA, P. Y.; GRELL, G. A.; MORRISON, H.; BARROS, S. R.; FERNANDEZ, J. P.; RAMIREZ, E.; SIQUEIRA, L.; LUZIA, G.; et al.: The Brazilian global atmospheric model (BAM): performance for tropical rainfall forecasting and sensitivity to convective scheme and horizontal resolution. Weather and Forecasting, v. 31, 1547–1572, 2016.

HERSBACH, H; BELL, B; BERRISFORD, P, et al. The ERA5 global reanalysis. Q J R Meteorol Soc. 2020; 146: 1999– 2049. https://doi.org/10.1002/qj.3803

HOLTSLAG, A.; BOVILLE, B. A.; Local versus nonlocal boundary-layer diffusion in a global climate model. Journal of Climate, v. 6, n. 10, 1825–1842, 1993.

IACONO, M. J.; DELAMARE, J. S.; MLAWER, E. J.; SHEPHARD, M. W.; CLOUGH, S. A.; COLLINS, W. D.: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. Journal of Geophysical Research Atmospheres, v. 113, n. 13, 2008.

KUBOTA, P.Y.: Variabilidade de Energia Armazenada na Superfície e seu Impacto na Definição do Padrão de Precipitação na América do Sul. Tese de doutorado, INPE, 2012.

MELLOR, G. L.; YAMADA, T;: Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysical Physics and Space Physics, v. 20, 851-875,1982.

MORRISON, H.; THOMPSON, G.; TATARSKII, V.: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Monthly Weather Review, v. 137, n. 3, 991–1007 (2009).

STULL, R. B.: An Introduction to Boundary Layer Meteorology. Springer Science & Business Media, 1988.

TAYLOR, G. I.: Diffusion by continuous movements. Proceedings of London Mathematical Society, v. 20, 196–211, 1921.

Published

2023-11-22

How to Cite

Eras, E. R., Kubota, P. Y., & Velho, H. F. de C. (2023). Statistical theory of turbulence applied to the BAM-INPE global model. Ciência E Natura, 45(esp. 2), e78815. https://doi.org/10.5902/2179460X78815

Most read articles by the same author(s)