Influence of submeso phenomena on turbulent parameters under different conditions of stability of the NBL of the Amazon

Authors

DOI:

https://doi.org/10.5902/2179460X82079

Keywords:

Submeso-scale, Turbulent parameters, Amazon rainforest

Abstract

The Submeso-scale flow is very important under conditions of stable stratification, which often occurs at the NBL, as this type of flow can produce intermittent turbulence. Thus, it is proposed to identify submeso scale signals and verify their relationship with the variability of some turbulent parameters, especially the height of the inflection point, on three nights with different atmospheric stability conditions. High frequency data (20 Hz) were used, which were measured by sonic anemometers at the 10 vertical levels of the micrometeorological tower, located at an experimental site in central Amazonia (site K34). In these data, the Morlet wavelet transform was applied to the variable u (zonal wind) to identify the intensity of the submeso signal. The data were also used to calculate the turbulent parameters (z/L, u*, H,  and inflection point) to verify the influence of submeso phenomena. The results show that submeso phenomena can affect the height of the inflection point.

Downloads

Download data is not yet available.

Author Biographies

Fabíola Carolina Pereira Valente, National Institute for Space Research

PhD student in Meteorology

Paulo Yoshio Kubota, National Institute for Space Research

PhD in Meteorology

Dayana Castilho de Souza, National Institute for Space Research

PhD in Meteorology

Layson de Jesus Menezes Gonçalves, Centro Nacional de Monitoramento e Alertas de Desastres Naturais

PhD in Meteorology

References

BOYKO, V; VERCAUTEREN, N. Multiscale Shear Forcing of Turbulence in the Nocturnal Boundary Layer: A Statistical Analysis. Boundary-Layer Meteorology, v. 179, n. 1, p. 43–72, 2021.

CPTEC - CENTRO DE PREVISÃO DE TEMPO E ESTUDOS CLIMÁTICOS. Boletim Técnico: Cachoeira Paulista, 2014. Disponível em: http://tempo.cptec.inpe.br/boletimtecnico/pt. Acesso em: 13 abr 2022.

DUPONT, S; PATTON, E. G. Momentum and scalar transport within a vegetation canopy following atmospheric stability and seasonal canopy changes: the CHATS experiment. Atmospheric Chemistry and Physics, v. 12, p. 5913-5935, 2012.

FUENTES, J. D.; CHAMECKI, M.; Dos Santos, R. M. N.; VON RANDOW, C.; STOY, P. C.; KATUL, G.; FITZJARRALD, D.; MANZI, A.; GERKEN, T.; TROWBRIDGE, A.; FREIRE, L. S.; RUIZ-PLANCARTE, J.; MAIA, J. M. F.; TÓTA, J.; DIAS, N.; FISCH, G.; SCHUMACHER, C.; ACEVEDO, O.;

MERCER, J. R.; YAÑEZ-SERRANO, A. M. Linking meteorology, turbulence, and air chemistry in the amazon rain forest. Bulletin of the American Meteorological Society, v. 97, n. 12, p. 2329–2342, 2016.

KRUIJT, B.; MALHI, Y.; LLOYD, J.; NOBRE, A. D.; MIRANDA, A. C.; PEREIRA, M. G. P.; CULF, A.; GRACE, J. Turbulence statistics above and within two Amazon rain forest canopies. Boundary-Layer Meteorology, v. 94, n. 2, p. 297–331, 2000.

MAHRT, L. Characteristics of submeso winds in the stable boundary layer. Boundary-Layer Meteorology, v. 130, n. 1, p. 1–14, 2009.

MORTARINI, L.; MALDANER, S.; MOOR, L. P.; STEFANELLO, M. B.; ACEVEDO, O.; DEGRAZIA, G.; ANFOSSI, D. Temperature auto-correlation and spectra functions in low-wind meandering conditions. Quarterly Journal of the Royal Meteorological Society, v. 142, n. 698, p. 1881–1889, 2016.

NA, J. S.; JIN, E. K.; LEE, J. S. Investigation of Kelvin–Helmholtz instability in the stable boundary layer using large eddy simulation. Journal of Geophysical Research, v. 119, n.13, p. 7876–7888, 2014.

POULOS, G. S.; BLUMEN, W.; FRITTS, D. C.; LUNDQUIST, J. K.; SUN, J.; BURNS, S. P.; NAPPO, C.; BANTA, R.; NEWSOM, R.; CUXART, J.; TERRADELLAS, E.; BALSLEY, B.; JENSEN, M. CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bulletin of the American Meteorological Society, v. 83, n. 4, p. 555–581, 2002.

SANTOS, D. M.; ACEVEDO, O. C.; CHAMECKI, M.; FUENTES, J. D.; GERKEN, T.; STOY, P. C. Temporal Scales of the Nocturnal Flow Within and Above a Forest Canopy in Amazonia. Boundary-Layer Meteorology, v. 161, n. 1, p. 73–98, 2016.

SEAMAN, N. L.; GAUDET, B. J.; STAUFFER, D. R.; MAHRT, L.; RICHARDSON, S. J.; ZIELONKA, J. R.; WYNGAARD, J. C. Numerical Prediction of Submesoscale FLow in the Nocturnal Stable Boundary Layer over Complex Terrain. Monthly Weather Review, v. 140, p. 956-977, 2012.

STULL, R. An introduction to boundary layer meteorology. Dordrecht: Kluwer Academic Publishers, 1988.

SUN, J.; BURNS, S. P.; LENSCHOW, D. H.; BANTA, R.; NEWSOM, R.; COULTER, R.; FRASIER, S.; INCE, T.; NAPPO, C.; CUXART, J.; BLUMEN, W.;

LEE, X.; HU, X. Z. Intermittent turbulence associated with a density current passage in the stable boundary layer. Boundary-Layer Meteorology, v. 105, n. 2, p. 199–219, 2002.

SUN, J.; NAPPO, C. J.; MAHRT, L.; BELUSIC, D.; GRISOGONO, B.; STAUFFER, D. R.; PULIDO, M.; STAQUET, C.; JIANG, Q.; POUQUET, A.;

YAGÜE, C.; GALPERIN, B.; SMITH, R. B.; FINNIGAN, J. J.; MAYOR, S. D.; SVENSSON, G.; GRACHEV, A. A.; NEFF, W. D. Review of wave-turbulence interactions in the stable atmospheric boundary layer. Reviews of Geophysics, v. 53, p. 956-993, 2015.

TORRENCE, C.; COMPO, G. P. A Practical guide to wavelet analysis. Bulletin of the American Meteorological Society, v. 79, p. 61–78, 1998.

VICKERS, D.; MAHRT, L. Quality control and flux sampling problems for tower and aircraft data. Journal of Atmospheric and Oceanic Technology, v. 14, p. 512-526, 1997.

ZERI, M.; SÁ, L. D. Horizontal and Vertical Turbulent Fluxes Forced by a Gravity Wave Event in the Nocturnal Atmospheric Surface Layer Over the Amazon Forest. Boundary-Layer Meteorology, v. 138, n. 3, p. 413–431, 2011.

Published

2023-11-22

How to Cite

Valente, F. C. P., Kubota, P. Y., Souza, D. C. de, & Gonçalves, L. de J. M. (2023). Influence of submeso phenomena on turbulent parameters under different conditions of stability of the NBL of the Amazon. Ciência E Natura, 45(esp. 2), e82079. https://doi.org/10.5902/2179460X82079