A comprehensive analysis of Weibull distribution parameter estimation methods to improve wind potential assessment
Keywords:
Wind potential, Weibull distribution, Parameters, Determination methods, Wind speeds, Estimation, Wind energy density, BrazilAbstract
The integration of various technologies and the techno-economic analysis are crucial for the successful deployment of renewable energies. This approach makes it possible to maximize the efficient use of clean energy sources, reduce costs, and improve system resilience. The work employs theoretical techniques to calculate specific characteristics of the Weibull distribution using experimental data collected by the Climate Research Unit (CRU Time-Series (TS) v. 4.0). 10 methods were used to estimate the Weibull distribution parameters. 10 methods were used to estimate the Weibull distribution parameters. The “Wreg” method has shown to be the most suitable for determining the Weibull distribution parameters in 23 Brazilian locations. On the other hand, the “PM” method proved to be suitable for four locations in Brazil, while the other methods were not considered adequate.
Downloads
References
Abreu, M. C.; Souza, A.; Lyra, G. B.; Pobocikova, I. & Cecilio, R. A. (2020) Analysis of monthly and annual rainfall variability using linear models in the state of Mato Grosso do Sul, Midwest of Brazil. Int. J. Climatol, 41, E2445–E2461. Recovered from: https://doi.org/10.1002/oj.6857.
Alvares, C. A.; Stape, J. L.; Sentelhas, P. C.; Gonçalves, J. L. M. & Sparovek, G. (2014). Ko ̈ppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728. doi: https://doi.org/10.1127/0941-2948/2013/0507.
Andrade, C. F.; Neto, H. F. M.; Rocha, P. A. C. C.; Silva, M. & V. (2014). An efficiency comparison of numerical methods for determining Weibull parameters for wind energy applications: A new approach applied to the northeast region of Brazil. Energy
Conversion and Management, 86, 801–808. doi: http://dx.doi.org/10.1016/j.enconman.2014.06.046.
Aziz, A.; Tsuanyo, D.; Nsouandele J.; Mamate, I.; Mouangue, R. & Abiama, P. E. (2023). Infuence of Weibull parameters on the estimation of wind energy potential. Sustainable Energy Research 10(1). doi: 10.1186/s40807-023-00075-y.
Badawi, A. S.; Hasbullaha, N. F.; Yusoff, S. H.; Khan, S.; Ais Hashim, A. H. & Zyoud, A. (2020). Numerical analysis for determining the Weibull parameters using seven techniques. International Journal of Power Electronics and Drive System (IJPEDS) 11(1). doi: 10.11591/ijpeds.v11.i1.
Badawi A. S.; Yusoff, S. H.; Zyoud, A. M.; Khan, S.; Hashim, A.; Uyaroğlu, Y. & Ismail, M. (2021). Data bank: nine numerical methods for determining the parameters of weibull for wind energy generation tested by five statistical tools. International Journal of Power Electronics and Drive Systems (IJPEDS) 12(2), 1114-1130. doi:10.11591/ijpeds.v12.i2.pp1114-1130.
Bailey, R. L. & Dell, T. (1973). Quantifying diameter distributions with the Weibull function. Forest Sci. 19(2), 97–104. doi: http://dx.doi.org/10.1093/forestscience/19.2.97.
Bilir, L.; Imir, M.; Devrim, Y. & Albostan, A. (2015). Seasonal and yearly wind speed distribution and wind power density analysis based on Weibull distribution function. International Journal of Hydrogen Energy, 40(44), 15301-15310. doi: https://doi.org/10.1016/j.ijhydene.2015.04.140.
Boulange, J.; Hanasaki, N.; Yamazaki, D. & Pokhrel, Y. (2021). Role of dams in reducing global flood exposure under climate change. Nature communications, 12(1), 417. doi: https://doi.org/10.1038/s41467-020-20704-0.
Costa Rocha, P. A.; Sousa, R. C. de.; Andrade, C. F. de. & Silva, M. E. V. da. (2012). Comparison of seven numerical methods for determining Weibull parameters for wind energy generation in the northeast region of Brazil. Applied Energy, 89(1), 395. doi: https://doi.org/10.1016/j.apenergy.2011.08.003.
Evans, J. W.; Kretschmann, D. E. & Green D. D. (2019). Procedures for estimation of Weibull parameters. Department of Agriculture, Forest Service, Forest Products Laboratory. General Technical Report FPL–GTR, 264, 1-17.
Gove, J. H. & Fairweather, S. E. (1989). Maximum-likelihood estimation of weibull function parameters using a general interactive optimizer and grouped data. Forest Ecol. Manag. 28(1), 61–69. doi: http://dx.doi.org/10.1016/0378-1127(89)90074-1.
Grandson, J. L. S. (2005). Deca ́logo of Climatology of the Brazilian Southeast. Rev. Bras. Climatol. 1, 43–60. doi: https://doi.org/10.5380/abclima.v1i1.25232.
Guarienti, J. A.; Kaufmann Almeida, A.; Menegati Neto, A.; Oliveira Ferreira, A. R. de.; Ottonelli, J. P. & Kaufmann de Almeida, I. (2020). Performance analysis of numerical methods for determining Weibull distribution parameters applied to wind speed in Mato Grosso do Sul, Brazil. Sustainable Energy Technologies and Assessments, 42(7). doi: doi.org/10.1016/j.seta.2020.100854.
Guenoukpati, A.; Salami, A. A.; Kodjo, M. K. & Napo, K. (2020). Estimating Weibull parameters for wind energy applications using seven numerical methods: Case studies of three coastal sites in West Africa. International Journal of Renewable Energy Development, 9(2): 217-226. doi: https://doi.org/10.14710/ijred.9.2.217-226.
Harris, I.; Jones, P. D.; Osborn, T. J. & Lister, D. H. (2014). Updated high resolution grids of monthly climatic observations-the CRU TS3.10 dataset. International Journal of Climatology, 34, 623-642. doi: https://doi.org/10.1002/joc.3711.
Hosking, J. R. M. (1990). L-moments: Analysis and estimation of distributions using linear combinations of order statistics. J. R. Stat. Soc. Ser. B Stat. Methodol., 52(1), 105–124. doi: https://www.jstor.org/stable/2345653.
Hove, T.; Madiye L. & Musademba, D. (2014). Mapping wind power density for Zimbabwe: A suitable Weibull-parameter calculation method. J. Energy South. Afr, 25(4), 37-47. doi: 10.17159/2413-3051/2014/v25i4a2236.
Hussain, I.; Haider, A.; Ullah, Z.; Russian, M.; Casolino, G. M. & Azeem, B. (2023). Comparative Analysis of Eight Numerical Methods Using Weibull Distribution to Estimate Wind Power Density for Coastal Areas in Pakistan. Energies, 16, 1515. doi: https://doi.org/10.3390/ EN16031515.
IBGE – Instituto Brasileiro de Geografia e Estatística, (2023). Cidades. Rio de Janeiro: IBGE. Recovered from: https://cidades.ibge.gov.br/.
Kang, D.; Ko, K. & Huh, J. (2018). Comparative study of different methods for estimating Weibull parameters: A case study on Jeju Island, South Korea. Energies, 11(2), 10.3390/en11020356.
Kanga, S.; Khanjaria, A.; You, S. & Leec, J. H. (2021). Comparison of different statistical methods used to estimate Weibull parameters for wind speed contribution in nearby an offshore site, Republic of Korea. Energy Reports, 7, 7358-7373. doi: doi.org/10.1016/j.egyr.2021.10.078.
Kantar, Y. M. (2015). Generalized least squares and weighted least squares estimation methods for distributional parameters.
REVSTAT—Stat., 13, 263–282. doi: http://dx.doi.org/10.1080/03610918.2011.611315.
Keller Filho, T.; Assad, E. D.; Schubnell, P. R. & Lima, R. (2005). Homogeneous rainfall regions in Brazil. Pesq. Agropec. Bras. 40, 311–322. doi: https://doi.org/10.1590/ S0100-204X2005000400001.
Kumar, K. S. P. & Gaddada, S. (2015). Statistical scrutiny of Weibull parameters for wind energy potential appraisal in the area of Northern Ethiopia. Renew. Wind Water Sun., 2(1). doi: 10.1186/s40807-015-0014-0.
Lira, B. R. P.; Lopes, L. D. N. A.; Chaves, J. R.; Santana, L. R. & Fernandes, L. L. (2020). Identification of Homogeneity, Trend and Magnitude of Precipitation in Bel ́em (Par ́a) between 1968 and 2018. Anu. Inst. Geocienc., 43, 426–439. doi: https://doi.org/ 10.11137/2020_4_426_439.
Lewis, C. D. (1982). Industrial and business forecasting methods. London: Butterworths.
Mohammadi, K.; Alavi, O.; Mostafaeipour, A.; Goudarzi, N. & Jalilvand, M. (2016). Assessing different parameters estimation methods of Weibull distribution to compute wind power density. Energy Conversion and Management, 108, 322-335. doi: https://doi.org/10.1016/j.enconman.2015.11.015.
Ouahabi, M. H.; Elkhachine, H.; Benabdelouahab, F. & Khamlichi, A. (2019). Comparative study of five different methods of adjustment by the Weibull model to determine the most accurate method of analyzing annual variations of wind energy in Tetouan – Morocco. Procedia Manuf., 46, 698-707. Recovered from: 10.1016/j.promfg.2020.03.099.
R Core Team. (2023). R: a language and environment for statistical computing. R: foundation for statistical computing, Vienna, Austria. Recovered from: https://www.R-project.org/.
Reboita, M. S.; Gan, M. A.; Rocha, R. P. & Ambrizzi, T. (2010). Precipitation regimes in South America: a literature review. Rev. Bras. Meteorol., 25, 185–204. doi: https://doi.org/10.1590/S0102-77862010000200004.
Sadani, S.; Abdollahnezhad, K.; Teimouri, M. & Ranjbar, V. (2019). A new estimator for weibull distribution parameters: Comprehensive comparative study for Weibull distribution. Journal of Statistical Research of Iran, 16(1), 33-57. doi: https://doi.org/10.48550/arXiv.1902.05658.
Saxena B. K. & Rao K. V. S. (2015). Comparison of Weibull parameters computation methods and analytical estimation of wind turbine capacity factor using polynomial power curve model: Case study of a wind farm. Renew. Wind Water Sun., 2(1). doi: 10.1186/s40807-014-0003-8.
Shimizu, M. H. & Ambrizzi, T. (2016). MJO influence on ENSO effects in precipitation and temperature over South America. Theor. Appl. Climatol., 124, 291–301. doi: https://doi. org/10.1007/s00704-015-1421-2.
Shoaib, M.; Siddiqui, I.; Amir, Y. M. & Rehman, S. U. (2017). Evaluation of wind power potential in Baburband (Pakistan) using Weibull distribution function. Renew Sustain Energy Rev., 70, 1343–1351.
Silva Junior, C. A.; Teodoro, P. E.; Delgado, R. C.; Teodoro, L. P. R.; Lima, M.; Pantaleão, A. A.; Baio, F. H. R.; ... & Facco, C. U. (2020). Persistent fire foci in all biomes undermine the Paris Agreement in Brazil. Sci. Rep. 10(16246). doi: https://doi.org/10.1038/s41598-020-72571-w.
Teimouri, M.; Doser, J. W. & Finley, A. O. (2020). ForestFit: An R package for modeling plant size distributions. Environmental Modelling & Software, 131, 104668. doi: https://doi.org/10.1016/j.envsoft.2020.104668.
Teimouri, M. & Nadarajah, S. (2012). A simple estimator for the weibull shape parameter. Int. J. Struct. Stab. Dyn., 12(2), 395–402. doi: http://dx.doi.org/10.1109/24.9839.
Usta, I. (2016). An innovative estimation method regarding Weibull parameters for wind energy applications. Energy, 106, 301-314. doi: https://doi.org/10.1016/j.energy.2016.03.068.
Zuñiga, S. V.; Bayona, J. G. R. & Castro, A. O. (2022). Evaluation of Eleven Numerical Methods for Determining Weibull Parameters for Wind Energy Generation in the Caribbean Region of Colombia. Mathematical Modelling of Engineering Problems. 9(1), 194-199. doi: https://doi.org/10.18280/mmep.090124.
Wang, F. & Keats, J. (1995). Improved percentile estimation for the two-parameter Weibull distribution. Microelectron. Reliab., 35(6), 883–892. doi: http://dx.doi.org/10.1016/0026-2714(94)00168-N.
Zhang, L. F.; Xie, M. & Tang. (2008). On weighted least squares estimation for the parameters of Weibull distribution. Recent advances in reliability and quality in design, 57-84. doi: https://doi.org/10.1007/978-1-84800-113-8_3.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ciência e Natura
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.