Eco-friendly strategies for the graphene oxide reduction

Authors

DOI:

https://doi.org/10.5902/2179460X86374

Keywords:

Reduction, Eco-friendly, Green approach

Abstract

The reduced graphene oxide (rGO) is a nanomaterial derived from graphene, which exhibits a high surface area, chemical stability, and extensive diffusion of π-conjugated bonds. Graphene oxide (GO) can be reduced to rGO through different protocols, however, commonly applied methodologies involving the use of chemical reagents may have disadvantageous effects on the environment. Considering the excellent properties of rGO, this study aimed to reduce GO through sustainable green strategies using carrots, oranges, and beets as reducing agents. The characterization of GO and rGO was carried out by X-ray diffraction spectroscopy (XRD), Fourier-transform infrared spectroscopy (FTIR) and scanning electronic microscopy (SEM), which revealed a reduction in the spacing between the layers of GO, indicating the formation of rGO. Due to the outstanding results obtained, future studies will explore the properties of this nanomaterial as an adsorbent for contaminants of emerging concern.

Downloads

Download data is not yet available.

Author Biographies

Leonardo Vidal Zancanaro, Universidade Franciscana

master's degree ( nanostructured magnetic materials laboratory).

Theodoro da Rosa Salles, Universidade Franciscana

Doctoral student.

Daniele Soares Basso Rhoden, Universidade Franciscana

Student, Graduated

Enzo Cassol Vincensi, Universidade Franciscana

Student, Academic Degree.

Sérgio Roberto Mortari, Universidade Franciscana

Professor, PhD.

Ivana Zanella, Universidade Franciscana

Professor, PhD.

Cristiano Rodrigo Bohn Rhoden, Universidade Franciscana

Professor, PhD.

References

Ahmed, A., Singh, A., Young, S., Gupta, V., Singh, M., & Arya, S. (2023). Synthesis techniques and advances in sensing applications of reduced graphene oxide (rGO) Composites: A review. Composites Part A: Applied Science and Manufacturing, 165, 107373. https://doi.org/10.1016/j.compositesa.2022.107373 DOI: https://doi.org/10.1016/j.compositesa.2022.107373

Amarnath, C. A., Hong, C. E., Kim, N. H., Ku, B., Kuila, T., & Lee, J. H. (2011). Efficient synthesis of graphene sheets using pyrrole as a reducing agent. Carbon, 49(11), 3497–3502. https://doi.org/10.1016/j.carbon.2011.04.048 DOI: https://doi.org/10.1016/j.carbon.2011.04.048

Barbieri, I. A., Oliveira, M. L., Da Silva Bruckmann, F., Salles, T. R., Zancanaro, L. V., Silva, L., Dotto, G. L., Lima, É. C., Naushad, M., & Rhoden, C. R. B. (2024). Effective removal of hypnotic drug from the aqueous medium through adsorption on graphene oxide magnetic derivatives. Journal of Molecular Liquids, 393, 123657. https://doi.org/10.1016/j.molliq.2023.123657 DOI: https://doi.org/10.1016/j.molliq.2023.123657

Bhargava, R., & Khan, S. (2017). Effect of reduced graphene oxide (rGO) on structural, optical, and dielectric properties of Mg (OH) 2 /rGO nanocomposites. Advanced Powder Technology, 28(11), 2812–2819. https://doi.org/10.1016/j.apt.2017.08.008 DOI: https://doi.org/10.1016/j.apt.2017.08.008

Cui, P., Lee, J., Hwang, E. Y., & Lee, H. (2011). One-pot reduction of graphene oxide at subzero temperatures. Chemical Communications, 47(45), 12370. https://doi.org/10.1039/c1cc15569e DOI: https://doi.org/10.1039/c1cc15569e

Da Rosa Salles, T., De Bitencourt Rodrigues, H., Da Silva Bruckmann, F., Alves, L. C. S., Mortari, S. R., & Rhoden, C. R. B. (2020). Graphene oxide optimization synthesis for application on laboratory of Universidade Franciscana. Disciplinarum Scientia, 21(3), 15–26. https://doi.org/10.37779/nt.v21i3.3632 DOI: https://doi.org/10.37779/nt.v21i3.3632

Da Silva Bruckmann, F., Ledur, C. M., Zanella, I., Dotto, G. L., & Rhoden, C. R. B. (2022). A DFT theoretical and experimental study about tetracycline adsorption onto magnetic graphene oxide. Journal of Molecular Liquids, 353, 118837. https://doi.org/10.1016/j.molliq.2022.118837 DOI: https://doi.org/10.1016/j.molliq.2022.118837

da Silva Bruckmann, F., Viana, A.R., Lopes, L.Q.S. et al. Synthesis, Characterization, and Biological Activity Evaluation of Magnetite-Functionalized Eugenol. J Inorg Organomet Polym 32, 1459–1472 (2022). https://doi.org/10.1007/s10904-021-02207-7 DOI: https://doi.org/10.1007/s10904-021-02207-7

Da Silva Bruckmann, F., Zuchetto, T., Ledur, C. M., Santos, C. L. D., Da Silva, W. L., Fagan, S. B., Zanella, I., & Rhoden, C. R. B. (2022). Methylphenidate adsorption onto graphene derivatives: theory and experiment. New Journal of Chemistry, 46(9), 4283–4291. https://doi.org/10.1039/d1nj03916d DOI: https://doi.org/10.1039/D1NJ03916D

da Silva Bruckmann, F.; Schnorr, C.E.; da Rosa Salles, T.; Nunes, F.B.; Baumann, L.; Müller, E.I.; Silva, L.F.O.; Dotto, G.L.; Bohn Rhoden, C.R. Highly Efficient Adsorption of Tetracycline Using Chitosan-Based Magnetic Adsorbent. Polymers 2022, 14, 4854. https://doi.org/10.3390/polym14224854 DOI: https://doi.org/10.3390/polym14224854

De Oliveira, É. C., Da Silva Bruckmann, F., Schopf, P. F., Viana, A. R., Mortari, S. R., Sagrillo, M. R., De Vasconcellos, N. J. S., Da Silva Fernandes, L., & Rhoden, C. R. B. (2022). In vitro and in vivo safety profile assessment of graphene oxide decorated with different concentrations of magnetite. Journal of Nanoparticle Research, 24(7). https://doi.org/10.1007/s11051-022-05529-w DOI: https://doi.org/10.1007/s11051-022-05529-w

Ferda Mindivan, & Meryem Göktaş. (2019). Effects of various vitamin C amounts on the green synthesis of reduced graphene oxide. MP MATERIALPRUEFUNG - MP MATERIALS TESTING, 61(10), 1007–1011. https://doi.org/10.3139/120.111416 DOI: https://doi.org/10.3139/120.111416

Harres, A., Garcia, W., Salles, T. R., Da Silva Bruckmann, F., Sulzenco, J. B., Schneider, A. D., & Rhoden, C. R. B. (2023). Magnetic properties of graphene oxide decorated with magnetite nanoparticles. Diamond and Related Materials, 138, 110238. https://doi.org/10.1016/j.diamond.2023.110238 DOI: https://doi.org/10.1016/j.diamond.2023.110238

Hidayah, N., Liu, W., Lai, C., Noriman, N. Z., Khe, C., Hashim, U., & Lee, H. C. (2017). Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization. AIP Conference Proceedings. https://doi.org/10.1063/1.5005764 DOI: https://doi.org/10.1063/1.5005764

Kellici S, Acord J, Ball J, et al (2014) A single rapid route for the synthesis of reduced graphene oxide with antibacterial activities. RSC Adv 4:14858–14861. https://doi.org/10.1039/c3ra47573e DOI: https://doi.org/10.1039/c3ra47573e

Kuila, T., Bose, S., Khanra, P., Mishra, A. K., Kim, N. H., & Lee, J. H. (2012). A green approach for the reduction of graphene oxide by wild carrot root. Carbon, 50(3), 914–921. https://doi.org/10.1016/j.carbon.2011.09.053 DOI: https://doi.org/10.1016/j.carbon.2011.09.053

Mahiuddin, Md., & Ochiai, B. (2021). Lemon Juice Assisted Green Synthesis of Reduced Graphene Oxide and Its Application for Adsorption of Methylene Blue. Technologies, 9(4), 96. https://doi.org/10.3390/technologies9040096 DOI: https://doi.org/10.3390/technologies9040096

Manikandan, V., & Lee, N. Y. (2023). Reduced graphene oxide: Biofabrication and environmental applications. Chemosphere, 311, 136934. https://doi.org/10.1016/j.chemosphere.2022.136934 DOI: https://doi.org/10.1016/j.chemosphere.2022.136934

Munir, T., Imran, M., Muzammil, S., Hussain, A. A., Alam, M. F., Mahmood, A., Sohail, A., Atif, M., Shafeeq, S., & Afzal, M. (2022). Antimicrobial activities of polyethylene glycol and citric acid coated graphene oxide-NPs synthesized via Hummer’s method. Arabian Journal of Chemistry, 15(9), 104075. https://doi.org/10.1016/j.arabjc.2022.104075 DOI: https://doi.org/10.1016/j.arabjc.2022.104075

Nunes, F.B., da Silva Bruckmann, F., da Rosa Salles, T. et al. Study of phenobarbital removal from the aqueous solutions employing magnetite-functionalized chitosan. Environ Sci Pollut Res 30, 12658–12671 (2023). https://doi.org/10.1007/s11356-022-23075-9 DOI: https://doi.org/10.1007/s11356-022-23075-9

Pattarith K, Areerob Y (2020) Fabrication of Ag nanoparticles adhered on RGO based on both electrodes in dye-sensitized solar cells (DSSCs). Renew Wind Water Sol 7: https://doi.org/10.1186/s40807-020-00058-3 DOI: https://doi.org/10.1186/s40807-020-00058-3

Paulchamy, B.; Arthi, G.; Lignesh, B. D. A simple approach to stepwise synthesis of graphene oxide nanomaterial. Journal of Nanomedicine & Nanotechnology, v. 6, n. 1, p. 1 - 4, 2015. DOI:0.4172/2157-7439.1000253

Peng, L., Xu, Z., Liu, Z., Wei, Y., Sun, H., Li, Z., Zhao, X., & Gao, C. (2015). An iron-based green approach to 1-h production of single-layer graphene oxide. Nature Communications, 6(1). https://doi.org/10.1038/ncomms6716 DOI: https://doi.org/10.1038/ncomms6716

Rhoden, C. R. B., Da Silva Bruckmann, F., Da Rosa Salles, T., Kaufmann, C. G., & Mortari, S. R. (2021). Study from the influence of magnetite onto removal of hydrochlorothiazide from aqueous solutions applying magnetic graphene oxide. Journal of Water Process Engineering, 43, 102262. https://doi.org/10.1016/j.jwpe.2021.102262 DOI: https://doi.org/10.1016/j.jwpe.2021.102262

Siti Kudnie Sahari, Asyraf Ariffifuddin Daud, Afiqah Baharin, Kashif, M., Lee Chin Kho, Norsuzailina Mohamed Sutan, Abdul Rahman Kram, Kuryati Kipli, & Marini Sawawi. (2020). Enhanced Dye-Sensitized Solar Cell Efficiency of Titanium Oxide (TiO2) -Doped Reduced Graphene Oxide (rGO). https://doi.org/10.1109/encon51501.2020.9299335 DOI: https://doi.org/10.1109/EnCon51501.2020.9299335

Thakur, S., & Karak, N. (2015). Alternative methods and nature-based reagents for the reduction of graphene oxide: A review. Carbon, 94, 224–242. https://doi.org/10.1016/j.carbon.2015.06.030 DOI: https://doi.org/10.1016/j.carbon.2015.06.030

Vargas, G. O., Schnorr, C. E., Nunes, F. B., Da Rosa Salles, T., Tonel, M. Z., Fagan, S. B., Zanella, I., Silva, L., Mortari, S. R., Dotto, G. L., & Rhoden, C. R. B. (2023). Highly furosemide uptake employing magnetic graphene oxide: DFT modeling combined to experimental approach. Journal of Molecular Liquids, 379, 121652. https://doi.org/10.1016/j.molliq.2023.121652 DOI: https://doi.org/10.1016/j.molliq.2023.121652

Velasco-Soto, M. Á., Pérez‐García, S. A., Alvarez-Quintana, J., Cao, Y., Nyborg, L., & Licea‐Jiménez, L. (2015). Selective band gap manipulation of graphene oxide by its reduction with mild reagents. Carbon, 93, 967–973. https://doi.org/10.1016/j.carbon.2015.06.013 DOI: https://doi.org/10.1016/j.carbon.2015.06.013

Vusa, C. S. R., Berchmans, S., & Alwarappan, S. (2014). Facile and green synthesis of graphene. RSC Adv., 4(43), 22470–22475. https://doi.org/10.1039/c4ra01718h DOI: https://doi.org/10.1039/C4RA01718H

Wang, T., Li, Y., Wang, L., Liu, C., Geng, S., Jia, X., Yang, F., Zhang, L., Liu, L., You, B., Ren, X., & Yang, H. (2015). Synthesis of graphene/α-Fe2O3 composites with excellent electromagnetic wave absorption properties. RSC Advances, 5(74), 60114–60120. https://doi.org/10.1039/c5ra09715k DOI: https://doi.org/10.1039/C5RA09715K

Wei, M., Qiao, L., Zhang, H., Karakalos, S., Ma, K., Fu, Z., Swihart, M. T., & Wu, G. (2017). Engineering reduced graphene oxides with enhanced electrochemical properties through multiple-step reductions. Electrochimica Acta, 258, 735–743. https://doi.org/10.1016/j.electacta.2017.11.120 DOI: https://doi.org/10.1016/j.electacta.2017.11.120

Zhang, W., Li, X., Liu, Y., Tang, X., Ma, Y., Li, M., Hu, N., Wei, H., & Zhang, Y. (2016). In situpreparation of cubic Cu2O-RGO nanocomposites for enhanced visible-light degradation of methyl orange. Nanotechnology, 27(26), 265703. https://doi.org/10.1088/0957-4484/27/26/265703 DOI: https://doi.org/10.1088/0957-4484/27/26/265703

Zheng, F., Xu, W., Jin, H., Hao, X., & Ghiggino, K. P. (2015). Charge transfer from poly(3-hexylthiophene) to graphene oxide and reduced graphene oxide. RSC Advances, 5(109), 89515–89520. https://doi.org/10.1039/c5ra18540h DOI: https://doi.org/10.1039/C5RA18540H

Downloads

Published

2024-04-26

How to Cite

Zancanaro, L. V., Salles, T. da R., Rhoden, D. S. B., Vincensi, E. C., Mortari, S. R., Zanella, I., & Rhoden, C. R. B. (2024). Eco-friendly strategies for the graphene oxide reduction. Ciência E Natura, 46, e86374. https://doi.org/10.5902/2179460X86374

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.