Esferas de quitosana/esmectita para remoção de azul de metileno: preparação e caracterização

Autores

DOI:

https://doi.org/10.5902/2179460X86389

Palavras-chave:

Corante, Adsorção, Compósito

Resumo

O tratamento de efluentes e a descontaminação de corpos de água são desafios globais urgentes devido ao alto consumo de água e à geração de efluentes industriais. Este estudo desenvolveu adsorventes eficientes e econômicos para a remoção do azul de metileno, corante amplamente utilizado e de elevada toxicidade. Compósitos de quitosana e argila esmectita foram preparados e caracterizados utilizando análises de FTIR, XRD e pHpcz. O FTIR confirmou a preservação dos grupos funcionais de ambos os materiais no compósito preparado, enquanto os difratogramas indicaram uma interação superficial, evidenciada pela ausência de deslocamentos nos picos do difratograma. O pH do ponto de carga zero na superfície dos compósitos CS/Clay-180 e CS/Clay-580 foi avaliado como 8,5 e 8,4, respectivamente. Os experimentos de adsorção abrangeram uma faixa de pH de 3 a 11, tempos de exposição de até 600 minutos e concentração do corante de 5 a 350 mg L-1. Os dados cinéticos seguiram modelos de primeira e segunda ordem, enquanto o modelo de Freundlich descreveu melhor as isotermas experimentais. Nossos compósitos apresentaram excelentes capacidades de adsorção, com valores máximos de 45,4 mg g-1 para CS/Clay-180 e 42,7 mg g-1 para CS/Clay-580, em pH 10 e tempo de contato de 300 min. Logo, as esferas de CS/Clay preparadas se apresentaram como adsorventes eficazes e ecologicamente corretos para a remoção de azul de metileno, contribuindo para o desenvolvimento de soluções sustentáveis para purificação de água.

Downloads

Não há dados estatísticos.

Biografia do Autor

Mateus Veras Pereira, Universidade Estadual de Campinas (UNICAMP)

Mestrado em Química pela UNICAMP.

Mauro Cosme de Carvalho Goes, Universidade Federal do Maranhão

Doutor em Biodiversidade e Biotecnologia pela UFMA.

Rodolfo Araújo Fernandes, Universidade Federal do Maranhão

Graduado em Química pela UEMA.

Suzyeth Monteiro Melo, Universidade Federal do Maranhão

Doutorado em Química Analítica e Inorgânica pelo IQSC - USP.

Joacy Batista de Lima, Universidade Federal do Maranhão

Doutorado em Química pelo IQSC - USP.

Cicero Wellington Brito Bezerra, Universidade Federal do Maranhão

Doutorado em Fisico Química pelo Instituto de Química de São Carlos.

Referências

Alafnan, S., Awotunde, A., Glatz, G., Adjei, S., Alrumaih, I., & Gowida, A. (2021). Langmuir adsorption isotherm in unconventional resources: Applicability and limitations. Journal of Petroleum Science and Engineering, 207, 109172. Recovered from: https://doi.org/10.1016/j.petrol.2021.109172 DOI: https://doi.org/10.1016/j.petrol.2021.109172

Anirudhan, T. S., & Ramachandran, M. (2015). Adsorptive removal of basic dyes from aqueous solutions by surfactant modified

bentonite clay (organoclay): Kinetic and competitive adsorption isotherm. Process Safety and Environmental Protection, 95, 215–225. Recovered from: https://doi.org/10.1016/j.psep.2015.03.003 DOI: https://doi.org/10.1016/j.psep.2015.03.003

Badawi, A. K., Elkodous, M. A., & Ali, G. A. M. (2021). Recent advances in dye and metal ion removal using efficient adsorbents and novel nano-based materials: An overview. RSC Advances, 11(58), 36528–36553. Recovered from: https://doi.org/10.1039/D1RA06892J DOI: https://doi.org/10.1039/D1RA06892J

Basaleh, A. A., Al-Malack, M. H., & Saleh, T. A. (2019). Methylene Blue removal using polyamide-vermiculite nanocomposites: Kinetics, equilibrium and thermodynamic study. Journal of Environmental Chemical Engineering, 7(3), 103107. Recovered from: https://doi.org/10.1016/j.jece.2019.103107 DOI: https://doi.org/10.1016/j.jece.2019.103107

Bée, A., Obeid, L., Mbolantenaina, R., Welschbillig, M., & Talbot, D. (2017). Magnetic chitosan/clay beads: A magsorbent for the removal of cationic dye from water. Journal of Magnetism and Magnetic Materials, 421, 59–64. Recovered from: https://doi.org/10.1016/j.jmmm.2016.07.022 DOI: https://doi.org/10.1016/j.jmmm.2016.07.022

Biswas, S., Fatema, J., Debnath, T., & Rashid, T. U. (2021). Chitosan–Clay Composites for Wastewater Treatment: A State-of-the-Art Review. ACS ES&T Water, 1(5), 1055–1085. Recovered from: https://doi.org/10.1021/acsestwater.0c00207 DOI: https://doi.org/10.1021/acsestwater.0c00207

Borja-Urzola, A. del C., García-Gómez, R. S., Flores, R., & Durán-Domínguez-de-Bazúa, M. del C. (2020). Chitosan from shrimp residues with a saturated solution of calcium chloride in methanol and water. Carbohydrate Research, 497, 108116. Recovered from: https://doi.org/10.1016/j.carres.2020.108116 DOI: https://doi.org/10.1016/j.carres.2020.108116

Cacciotti, I., Lombardelli, C., Benucci, I., & Esti, M. (2019). Clay/chitosan biocomposite systems as novel green carriers for covalent immobilization of food enzymes. Journal of Materials Research and Technology, 8(4), 3644–3652. Recovered from: https://doi.org/10.1016/j.jmrt.2019.06.002 DOI: https://doi.org/10.1016/j.jmrt.2019.06.002

Cheikh, D., García-Villén, F., Majdoub, H., Zayani, M. B., & Viseras, C. (2019). Complex of chitosan pectin and clay as diclofenac carrier. Applied Clay Science, 172, 155–164. Recovered from: https://doi.org/10.1016/j.clay.2019.03.004 DOI: https://doi.org/10.1016/j.clay.2019.03.004

Chen, X., Hossain, M. F., Duan, C., Lu, J., Tsang, Y. F., Islam, M. S., & Zhou, Y. (2022). Isotherm models for adsorption of heavy metals from water - A review. Chemosphere, 307, 135545. Recovered from: https://doi.org/10.1016/j.chemosphere.2022.135545 DOI: https://doi.org/10.1016/j.chemosphere.2022.135545

Christidis, G. E. (2008). Validity of the structural formula method for layer charge determination of smectites: A re-evaluation of published data. Applied Clay Science, 42(1), 1–7. Recovered from: https://doi.org/10.1016/j.clay.2008.02.002 DOI: https://doi.org/10.1016/j.clay.2008.02.002

Darder, M., Colilla, M., & Ruiz-Hitzky, E. (2003). Biopolymer−Clay Nanocomposites Based on Chitosan Intercalated in Montmorillonite. Chemistry of Materials, 15(20), 3774–3780. Recovered from: https://doi.org/10.1021/cm0343047 DOI: https://doi.org/10.1021/cm0343047

Duan, F., Zhu, Y., Liu, Y., Mu, B., & Wang, A. (2024). Green Fabrication of Porous Adsorbent with Structural Evolution of Mixed-Dimension Attapulgite Clay for Efficient Removal of Methylene Blue and Sustainable Utilization. ACS Sustainable Resource Management, 1(4), 670–680. Recovered from: https://doi.org/10.1021/acssusresmgt.3c00086 DOI: https://doi.org/10.1021/acssusresmgt.3c00086

El-habacha, M., Miyah, Y., Lagdali, S., Mahmoudy, G., Dabagh, A., Chiban, M., Sinan, F., … & Zerbet, M. (2023). General overview to understand the adsorption mechanism of textile dyes and heavy metals on the surface of different clay materials. Arabian Journal of Chemistry, 16(11), 105248. Recovered from: https://doi.org/10.1016/j.arabjc.2023.105248 DOI: https://doi.org/10.1016/j.arabjc.2023.105248

Ewis, D., Ba-Abbad, M. M., Benamor, A., & El-Naas, M. H. (2022). Adsorption of organic water pollutants by clays and clay minerals composites: A comprehensive review. Applied Clay Science, 229, 106686. Recovered from: https://doi.org/10.1016/j.clay.2022.106686 DOI: https://doi.org/10.1016/j.clay.2022.106686

Gao, L., Lu, Y., Chen, S., Ma, X., & Zhao, W. (2024). Fe3O4 Nanoparticle/Hyper-Cross-Linked Polymer Composites for Dye Removal. ACS Applied Nano Materials, 7(9), 9960–9967. Recovered from: https://doi.org/10.1021/acsanm.3c06264 DOI: https://doi.org/10.1021/acsanm.3c06264

Goyal, N., Amar, A., Gulati, S., & Varma, R. S. (2023). Cyclodextrin-Based Nanosponges as an Environmentally Sustainable Solution for Water Treatment: A Review. ACS Applied Nano Materials, 6(15), 13766–13791. Recovered from: https://doi.org/10.1021/acsanm.3c02026 DOI: https://doi.org/10.1021/acsanm.3c02026

Hammer, Ø., Harper, D. & Ryan, P. D. (2001). PAST: PALEONTOLOGICAL STATISTICS SOFTWARE PACKAGE FOR EDUCATION AND DATA ANALYSIS. Paleontologia Eletrônica, 4(1). Recovered from: https://palaeo-electronica.org/2001_1/past/issue1_01.htm

Hu, Q., Lan, R., He, L., Liu, H., & Pei, X. (2023). A critical review of adsorption isotherm models for aqueous contaminants: Curve characteristics, site energy distribution and common controversies. Journal of Environmental Management, 329, 117104. Recovered from: https://doi.org/10.1016/j.jenvman.2022.117104 DOI: https://doi.org/10.1016/j.jenvman.2022.117104

Iftikhar, S., Rashid, K., Ul Haq, E., Zafar, I., Alqahtani, F. K., & Iqbal Khan, M. (2020). Synthesis and characterization of sustainable geopolymer green clay bricks: An alternative to burnt clay brick. Construction and Building Materials, 259, 119659. Recovered from: https://doi.org/10.1016/j.conbuildmat.2020.119659 DOI: https://doi.org/10.1016/j.conbuildmat.2020.119659

Jawad, A. H., & Abdulhameed, A. S. (2020). Facile synthesis of crosslinked chitosan-tripolyphosphate/kaolin clay composite for decolourization and COD reduction of remazol brilliant blue R dye: Optimization by using response surface methodology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 605, 125329. Recovered from: https://doi.org/10.1016/j.colsurfa.2020.125329 DOI: https://doi.org/10.1016/j.colsurfa.2020.125329

Jong, S. M. de, Spiers, C. J., & Busch, A. (2014). Development of swelling strain in smectite clays through exposure to carbon dioxide. International Journal of Greenhouse Gas Control, 24, 149–161. Recovered from: https://doi.org/10.1016/j.ijggc.2014.03.010 DOI: https://doi.org/10.1016/j.ijggc.2014.03.010

Jeon, I., & Nam, K. (2019). Change in the site density and surface acidity of clay minerals by acid or alkali spills and its effect on pH buffering capacity. Scientific Reports, 9(1), Article 1. Recovered from: https://doi.org/10.1038/s41598-019-46175-y DOI: https://doi.org/10.1038/s41598-019-46175-y

Kausar, A., Naeem, K., Hussain, T., Nazli, Z.-H., Bhatti, H. N., Jubeen, F., Nazir, A., & Iqbal, M. (2019). Preparation and characterization of chitosan/clay composite for direct Rose FRN dye removal from aqueous media: Comparison of linear and non-linear regression methods. Journal of Materials Research and Technology, 8(1), 1161–1174. Recovered from: https://doi.org/10.1016/j.jmrt.2018.07.020 DOI: https://doi.org/10.1016/j.jmrt.2018.07.020

Khan, M. S., Khalid, M., & Shahid, M. (2020). What triggers dye adsorption by metal organic frameworks? The current perspectives. Materials Advances, 1(6), 1575–1601. Recovered from: https://doi.org/10.1039/D0MA00291G DOI: https://doi.org/10.1039/D0MA00291G

Kwon, D., & Kim, J. (2020). Silver-doped ZnO for photocatalytic degradation of methylene blue. Korean Journal of Chemical Engineering, 37(7), 1226–1232. Recovered from: https://doi.org/10.1007/s11814-020-0520-7 DOI: https://doi.org/10.1007/s11814-020-0520-7

Laaraibi, A., Moughaoui, F., Damiri, F., Ouakit, A., Charhouf, I., Hamdouch, S., Jaafari, A., … & Berrada, A. B. (2018). Chitosan-Clay Based (CS-NaBNT) Biodegradable Nanocomposite Films for Potential Utility in Food and Environment. In Dongre, Rejendra. Chitin-Chitosan—Myriad Functionalities in Science and Technology. IntechOpen. Recovered https://doi.org/10.5772/intechopen.76498 DOI: https://doi.org/10.5772/intechopen.76498

Langmuir, I. (1918). The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. Journal of the American Chemical Society, 40(9), 1361–1403. Recovered from: https://doi.org/10.1021/ja02242a004 DOI: https://doi.org/10.1021/ja02242a004

Leite, S. Q. M., Colodete, C. H. A., Dieguez, L. C., & San Gil, R. A. S. (2000). Extração de ferro de esmectita brasileira com emprego do método ditionito-citrato-bicarbonato. Química Nova, 23, 297–302. Recovered from: https://doi.org/10.1590/S0100-40422000000300002 DOI: https://doi.org/10.1590/S0100-40422000000300002

Lertsutthiwong, P., Noomun, K., Khunthon, S., & Limpanart, S. (2012). Influence of chitosan characteristics on the properties of biopolymeric chitosan–montmorillonite. Progress in Natural Science: Materials International, 22(5), 502–508. Recovered from: https://doi.org/10.1016/j.pnsc.2012.07.008 DOI: https://doi.org/10.1016/j.pnsc.2012.07.008

Madejová, J. (2003). FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31(1), 1–10. Recovered from: https://doi.org/10.1016/S0924-2031(02)00065-6 DOI: https://doi.org/10.1016/S0924-2031(02)00065-6

Marmier, T., Szczepanski, C. R., Candet, C., Zenerino, A., Godeau, R.-P., & Godeau, G. (2020). Investigation on Mecynorhina torquata Drury, 1782 (Coleoptera, Cetoniidae, Goliathini) cuticle: Surface properties, chitin and chitosan extraction. International Journal of Biological Macromolecules, 164, 1164–1173. Recovered from: https://doi.org/10.1016/j.ijbiomac.2020.07.155 DOI: https://doi.org/10.1016/j.ijbiomac.2020.07.155

Marrakchi, F., Hameed, B. H., & Hummadi, E. H. (2020). Mesoporous biohybrid epichlorohydrin crosslinked chitosan/carbon–clay adsorbent for effective cationic and anionic dyes adsorption. International Journal of Biological Macromolecules, 163, 1079–1086. Recovered from: https://doi.org/10.1016/j.ijbiomac.2020.07.032 DOI: https://doi.org/10.1016/j.ijbiomac.2020.07.032

Messa, L. L., Froes, J. D., Souza, C. F., & Faez, R. (2016). Híbridos de Quitosana-Argila para Encapsulamento e Liberação Sustentada do Fertilizante Nitrato de Potássio. Química Nova, 39, 1215–1220. Recovered from: https://doi.org/10.21577/0100-4042.20160133 DOI: https://doi.org/10.21577/0100-4042.20160133

Methneni, N., Morales-González, J. A., Jaziri, A., Mansour, H. B., & Fernandez-Serrano, M. (2021). Persistent organic and inorganic pollutants in the effluents from the textile dyeing industries: Ecotoxicology appraisal via a battery of biotests. Environmental Research, 196, 110956. Recovered from: https://doi.org/10.1016/j.envres.2021.110956 DOI: https://doi.org/10.1016/j.envres.2021.110956

Mittal, H., Alili, A. A., & Alhassan, S. M. (2023). Latest progress in utilizing gum hydrogels and their composites as high-efficiency adsorbents for removing pollutants from wastewater. Journal of Molecular Liquids, 391, 123392. Recovered from: https://doi.org/10.1016/j.molliq.2023.123392 DOI: https://doi.org/10.1016/j.molliq.2023.123392

Mudzielwana, R., & Gitari, M. W. (2021). Removal of fluoride from groundwater using MnO2 bentonite-smectite rich clay soils composite.Groundwater for Sustainable Development, 14, 100623. Recovered from: https://doi.org/10.1016/j.gsd.2021.100623 DOI: https://doi.org/10.1016/j.gsd.2021.100623

Nizam El-Din, H. M., & Ibraheim, D. M. (2021). Biological applications of nanocomposite hydrogels prepared by gamma-radiation copolymerization of acrylic acid (AAc) onto plasticized starch (PLST)/montmorillonite clay (MMT)/chitosan (CS) blends. International Journal of Biological Macromolecules, 192, 151–160. Recovered from: https://doi.org/10.1016/j.ijbiomac.2021.09.196 DOI: https://doi.org/10.1016/j.ijbiomac.2021.09.196

Nunes, Y. L., Menezes, F. L. de, Sousa de, I. G., Cavalcante, A. L. G., Cavalcante, F. T. T., Silva Moreira, K. da, Oliveira, A. L. B. de, ... & Santos, J. C. S. dos. (2021). Chemical and physical Chitosan modification for designing enzymatic industrial biocatalysts: How to choose the best strategy? International Journal of Biological Macromolecules, 181, 1124–1170. Recovered from: https://doi.org/10.1016/j.ijbiomac.2021.04.004 DOI: https://doi.org/10.1016/j.ijbiomac.2021.04.004

Oliveira, M. F. L. de, Oliveira, M. G. de, & Leite, M. C. A. M. (2011). Nanocompósitos de poliamida 6 e argila organofílica: Estudo da cristalinidade e propriedades mecânicas. Polímeros, 21, 78–82. Recovered from: https://doi.org/10.1590/S0104-14282011005000015 DOI: https://doi.org/10.1590/S0104-14282011005000015

Oliveira, M. P. de, Schnorr, C., Rosa Salles, T. da, Silva Bruckmann, F. da, Baumann, L., Muller, E. I., Silva Garcia, W. J. da, ... & Rhoden, C. R. B. (2023). Efficient Uptake of Angiotensin-Converting Enzyme II Inhibitor Employing Graphene Oxide-Based Magnetic Nanoadsorbents. Water, 15(2), Article 2. Recovered from: https://doi.org/10.3390/w15020293 DOI: https://doi.org/10.3390/w15020293

Ouaddari, H., Abbou, B., Lebkiri, I., Habsaoui, A., Ouzzine, M., & Fath Allah, R. (2024). Removal of Methylene Blue by adsorption onto natural and purified clays: Kinetic and thermodynamic study. Chemical Physics Impact, 8, 100405. Recovered from: https://doi.org/10.1016/j.chphi.2023.100405 DOI: https://doi.org/10.1016/j.chphi.2023.100405

Pakizeh, M., Moradi, A., & Ghassemi, T. (2021). Chemical extraction and modification of chitin and chitosan from shrimp shells. European Polymer Journal, 159, 110709. Recovered from: https://doi.org/10.1016/j.eurpolymj.2021.110709 DOI: https://doi.org/10.1016/j.eurpolymj.2021.110709

Rashid, T. U., Kabir, S. M. F., Biswas, M. C., & Bhuiyan, M. A. R. (2020). Sustainable Wastewater Treatment via Dye–Surfactant Interaction: A Critical Review. Industrial & Engineering Chemistry Research, 59(21), 9719–9745. Recovered from: https://doi.org/10.1021/acs.iecr.0c00676 DOI: https://doi.org/10.1021/acs.iecr.0c00676

Rekik, S. B., Gassara, S., Bouaziz, J., Deratani, A., & Baklouti, S. (2017). Development and characterization of porous membranes based on kaolin/chitosan composite. Applied Clay Science, 143, 1–9. Recovered from: https://doi.org/10.1016/j.clay.2017.03.008 DOI: https://doi.org/10.1016/j.clay.2017.03.008

Rezende, M. J. C., Pereira, M. S. C., Santos, G. F. N., Aroeira, G. O. P., Albuquerque Jr., T. C., Suarez, P. A. Z., & Pinto, A. C. (2012). Preparation, characterisation and evaluation of brazilian clay-based catalysts for use in esterification reactions. Journal of the Brazilian Chemical Society, 23, 1209–1215. Recovered from: https://doi.org/10.1590/S0103-50532012000700003 DOI: https://doi.org/10.1590/S0103-50532012000700003

Ribeiro, G. A. C., Silva, D. S. A., Santos, C. C. dos, Vieira, A. P., Bezerra, C. W. B., Tanaka, A. A., & Santana, S. A. A. (2017). Removal of Remazol brilliant violet textile dye by adsorption using rice hulls. Polímeros, 27, 16–26. Recovered from: https://doi.org/10.1590/0104-1428.2386 DOI: https://doi.org/10.1590/0104-1428.2386

Rocha, F. N., Suarez, P. A. Z., & Guimarães, E. M. (2014). Clays and their Applications in Pottery and Ceramics Materials. Revista Virtual de Química, 6(4). Recovered from: https://doi.org/10.5935/1984-6835.20140070 DOI: https://doi.org/10.5935/1984-6835.20140070

Saba, B., Kjellerup, B. V., & Christy, A. D. (2021). Eco-friendly bio-electro-degradation of textile dyes wastewater. Bioresource Technology Reports, 15, 100734. Recovered from: https://doi.org/10.1016/j.biteb.2021.100734 DOI: https://doi.org/10.1016/j.biteb.2021.100734

Santos, B. F. dos, Maciel, A. M., Tavares, A. A., Araújo Fernandes, C. Q. B. de, Sousa, W. J. B. de, Lia Fook, M. V., Farias Leite, I., & Lima Silva, S. M. de. (2018). Synthesis and Preparation of Chitosan/Clay Microspheres: Effect of Process Parameters and Clay Type. Materials, 11(12), Article 12. Recovered from: https://doi.org/10.3390/ma11122523 DOI: https://doi.org/10.3390/ma11122523

Shen, J., Huang, G., An, C., Xin, X., Huang, C., & Rosendahl, S. (2018). Removal of Tetrabromobisphenol A by adsorption on pinecone-derived activated charcoals: Synchrotron FTIR, kinetics and surface functionality analyses. Bioresource Technology, 247, 812–820. Recovered from: https://doi.org/10.1016/j.biortech.2017.09.177 DOI: https://doi.org/10.1016/j.biortech.2017.09.177

Silva, A. O., Cunha, R. S., Hotza, D., & Machado, R. A. F. (2021). Chitosan as a matrix of nanocomposites: A review on nanostructures, processes, properties, and applications. Carbohydrate Polymers, 272, 118472. Recovered from: https://doi.org/10.1016/j.carbpol.2021.118472 DOI: https://doi.org/10.1016/j.carbpol.2021.118472

Singh, R., Munya, V., Are, V. N., Nayak, D., & Chattopadhyay, S. (2021). A Biocompatible, pH-Sensitive, and Magnetically Separable Superparamagnetic Hydrogel Nanocomposite as an Efficient Platform for the Removal of Cationic Dyes in Wastewater Treatment. ACS Omega, 6(36), 23139–23154. Recovered from: https://doi.org/10.1021/acsomega.1c02720 DOI: https://doi.org/10.1021/acsomega.1c02720

Singhapong, W., Jaroenworaluck, A., & Manpetch, P. (2024). Novel and Reusable Graphene Oxide-Coated Reticulated Open-Cell Mullite Foams for Methylene Blue Dye Adsorption. ACS Omega, 9(5), 5541–5547. Recovered from: https://doi.org/10.1021/acsomega.3c07569 DOI: https://doi.org/10.1021/acsomega.3c07569

Sips, R. (1948). On the Structure of a Catalyst Surface. The Journal of Chemical Physics, 16(5), 490–495. Recovered from: https://doi.org/10.1063/1.1746922 DOI: https://doi.org/10.1063/1.1746922

Sirajudheen, P., Poovathumkuzhi, N. C., Vigneshwaran, S., Chelaveettil, B. M., & Meenakshi, S. (2021). Applications of chitin and chitosan based biomaterials for the adsorptive removal of textile dyes from water—A comprehensive review. Carbohydrate Polymers, 273, 118604. Recovered from: https://doi.org/10.1016/j.carbpol.2021.118604 DOI: https://doi.org/10.1016/j.carbpol.2021.118604

Staroszczyk, H., Sztuka, K., Wolska, J., Wojtasz-Pająk, A., & Kołodziejska, I. (2014). Interactions of fish gelatin and chitosan in uncrosslinked and crosslinked with EDC films: FT-IR study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117, 707–712. Recovered from: https://doi.org/10.1016/j.saa.2013.09.044 DOI: https://doi.org/10.1016/j.saa.2013.09.044

Salles, T. da R., Schnorr, C., Bruckmann, F. da S., Vicensi, E. C., Viana, A. R., Schuch, A. P., Garcia W. de J. da S., ... & Rhoden, C. R. B. (2023). Effective diuretic drug uptake employing magnetic carbon nanotubes derivatives: Adsorption study and in vitro geno-cytotoxic assessment. Separation and Purification Technology, 315, 123713. Recovered from: https://doi.org/10.1016/j.seppur.2023.123713 DOI: https://doi.org/10.1016/j.seppur.2023.123713

Topcu, C., Caglar, B., Onder, A., Coldur, F., Caglar, S., Guner, E. K., Cubuk, O., & Tabak, A. (2018). Structural characterization of chitosan-smectite nanocomposite and its application in the development of a novel potentiometric monohydrogen phosphate-selective sensor. Materials Research Bulletin, 98, 288–299. Recovered from: https://doi.org/10.1016/j.materresbull.2017.09.068 DOI: https://doi.org/10.1016/j.materresbull.2017.09.068

Tran, N. N., Escribà-Gelonch, M., Sarafraz, M. M., Pho, Q. H., Sagadevan, S., & Hessel, V. (2023). Process Technology and Sustainability Assessment of Wastewater Treatment. Industrial & Engineering Chemistry Research, 62(3), 1195–1214. Recovered from: https://doi.org/10.1021/acs.iecr.2c03471 DOI: https://doi.org/10.1021/acs.iecr.2c03471

Vasconcelos, M. W., Gonçalves, S., Oliveira, E. C. de, Rubert, S., & Ghisi, N. de C. (2022). Textile effluent toxicity trend: A scientometric review. Journal of Cleaner Production, 366, 132756. Recovered from: https://doi.org/10.1016/j.jclepro.2022.132756 DOI: https://doi.org/10.1016/j.jclepro.2022.132756

Vithalkar, S. H., & Jugade, R. M. (2020). Adsorptive removal of crystal violet from aqueous solution by cross-linked chitosan coated bentonite. Materials Today: Proceedings, 29, 1025–1032. Recovered from: https://doi.org/10.1016/j.matpr.2020.04.705 DOI: https://doi.org/10.1016/j.matpr.2020.04.705

Wade C. Driscoll. (1996). Robustness of the ANOVA and Tukey-Kramer statistical tests. Computers & Industrial Engineering, 31(1–2), 265–268. Recovered from: https://doi.org/10.1016/0360-8352(96)00127-1 DOI: https://doi.org/10.1016/0360-8352(96)00127-1

Zhao, T., Xu, S., & Hao, F. (2023). Differential adsorption of clay minerals: Implications for organic matter enrichment. Earth-Science Reviews, 246, 104598. Recovered from: https://doi.org/10.1016/j.earscirev.2023.104598 DOI: https://doi.org/10.1016/j.earscirev.2023.104598

Zhou, Q., Gao, Q., Luo, W., Yan, C., Ji, Z., & Duan, P. (2015). One-step synthesis of amino-functionalized attapulgite clay nanoparticles adsorbent by hydrothermal carbonization of chitosan for removal of methylene blue from wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 470, 248–257. Recovered from: https://doi.org/10.1016/j.colsurfa.2015.01.092 DOI: https://doi.org/10.1016/j.colsurfa.2015.01.092

Zouaoui, F., Bourouina-Bacha, S., Bourouina, M., Jaffrezic-Renault, N., Zine, N., & Errachid, A. (2020). Electrochemical sensors based on molecularly imprinted chitosan: A review. TrAC Trends in Analytical Chemistry, 130, 115982. Recovered from: https://doi.org/10.1016/j.trac.2020.115982 DOI: https://doi.org/10.1016/j.trac.2020.115982

Publicado

2025-04-01

Como Citar

Pereira, M. V., Goes, M. C. de C., Fernandes, R. A., Melo, S. M., Lima, J. B. de, & Bezerra, C. W. B. (2025). Esferas de quitosana/esmectita para remoção de azul de metileno: preparação e caracterização. Ciência E Natura, 47, e86389. https://doi.org/10.5902/2179460X86389

Edição

Seção

Química

Artigos Semelhantes

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.