Esferas de quitosana/esmectita para remoção de azul de metileno: preparação e caracterização
DOI:
https://doi.org/10.5902/2179460X86389Palavras-chave:
Corante, Adsorção, CompósitoResumo
O tratamento de efluentes e a descontaminação de corpos de água são desafios globais urgentes devido ao alto consumo de água e à geração de efluentes industriais. Este estudo desenvolveu adsorventes eficientes e econômicos para a remoção do azul de metileno, corante amplamente utilizado e de elevada toxicidade. Compósitos de quitosana e argila esmectita foram preparados e caracterizados utilizando análises de FTIR, XRD e pHpcz. O FTIR confirmou a preservação dos grupos funcionais de ambos os materiais no compósito preparado, enquanto os difratogramas indicaram uma interação superficial, evidenciada pela ausência de deslocamentos nos picos do difratograma. O pH do ponto de carga zero na superfície dos compósitos CS/Clay-180 e CS/Clay-580 foi avaliado como 8,5 e 8,4, respectivamente. Os experimentos de adsorção abrangeram uma faixa de pH de 3 a 11, tempos de exposição de até 600 minutos e concentração do corante de 5 a 350 mg L-1. Os dados cinéticos seguiram modelos de primeira e segunda ordem, enquanto o modelo de Freundlich descreveu melhor as isotermas experimentais. Nossos compósitos apresentaram excelentes capacidades de adsorção, com valores máximos de 45,4 mg g-1 para CS/Clay-180 e 42,7 mg g-1 para CS/Clay-580, em pH 10 e tempo de contato de 300 min. Logo, as esferas de CS/Clay preparadas se apresentaram como adsorventes eficazes e ecologicamente corretos para a remoção de azul de metileno, contribuindo para o desenvolvimento de soluções sustentáveis para purificação de água.
Downloads
Referências
Alafnan, S., Awotunde, A., Glatz, G., Adjei, S., Alrumaih, I., & Gowida, A. (2021). Langmuir adsorption isotherm in unconventional resources: Applicability and limitations. Journal of Petroleum Science and Engineering, 207, 109172. Recovered from: https://doi.org/10.1016/j.petrol.2021.109172 DOI: https://doi.org/10.1016/j.petrol.2021.109172
Anirudhan, T. S., & Ramachandran, M. (2015). Adsorptive removal of basic dyes from aqueous solutions by surfactant modified
bentonite clay (organoclay): Kinetic and competitive adsorption isotherm. Process Safety and Environmental Protection, 95, 215–225. Recovered from: https://doi.org/10.1016/j.psep.2015.03.003 DOI: https://doi.org/10.1016/j.psep.2015.03.003
Badawi, A. K., Elkodous, M. A., & Ali, G. A. M. (2021). Recent advances in dye and metal ion removal using efficient adsorbents and novel nano-based materials: An overview. RSC Advances, 11(58), 36528–36553. Recovered from: https://doi.org/10.1039/D1RA06892J DOI: https://doi.org/10.1039/D1RA06892J
Basaleh, A. A., Al-Malack, M. H., & Saleh, T. A. (2019). Methylene Blue removal using polyamide-vermiculite nanocomposites: Kinetics, equilibrium and thermodynamic study. Journal of Environmental Chemical Engineering, 7(3), 103107. Recovered from: https://doi.org/10.1016/j.jece.2019.103107 DOI: https://doi.org/10.1016/j.jece.2019.103107
Bée, A., Obeid, L., Mbolantenaina, R., Welschbillig, M., & Talbot, D. (2017). Magnetic chitosan/clay beads: A magsorbent for the removal of cationic dye from water. Journal of Magnetism and Magnetic Materials, 421, 59–64. Recovered from: https://doi.org/10.1016/j.jmmm.2016.07.022 DOI: https://doi.org/10.1016/j.jmmm.2016.07.022
Biswas, S., Fatema, J., Debnath, T., & Rashid, T. U. (2021). Chitosan–Clay Composites for Wastewater Treatment: A State-of-the-Art Review. ACS ES&T Water, 1(5), 1055–1085. Recovered from: https://doi.org/10.1021/acsestwater.0c00207 DOI: https://doi.org/10.1021/acsestwater.0c00207
Borja-Urzola, A. del C., García-Gómez, R. S., Flores, R., & Durán-Domínguez-de-Bazúa, M. del C. (2020). Chitosan from shrimp residues with a saturated solution of calcium chloride in methanol and water. Carbohydrate Research, 497, 108116. Recovered from: https://doi.org/10.1016/j.carres.2020.108116 DOI: https://doi.org/10.1016/j.carres.2020.108116
Cacciotti, I., Lombardelli, C., Benucci, I., & Esti, M. (2019). Clay/chitosan biocomposite systems as novel green carriers for covalent immobilization of food enzymes. Journal of Materials Research and Technology, 8(4), 3644–3652. Recovered from: https://doi.org/10.1016/j.jmrt.2019.06.002 DOI: https://doi.org/10.1016/j.jmrt.2019.06.002
Cheikh, D., García-Villén, F., Majdoub, H., Zayani, M. B., & Viseras, C. (2019). Complex of chitosan pectin and clay as diclofenac carrier. Applied Clay Science, 172, 155–164. Recovered from: https://doi.org/10.1016/j.clay.2019.03.004 DOI: https://doi.org/10.1016/j.clay.2019.03.004
Chen, X., Hossain, M. F., Duan, C., Lu, J., Tsang, Y. F., Islam, M. S., & Zhou, Y. (2022). Isotherm models for adsorption of heavy metals from water - A review. Chemosphere, 307, 135545. Recovered from: https://doi.org/10.1016/j.chemosphere.2022.135545 DOI: https://doi.org/10.1016/j.chemosphere.2022.135545
Christidis, G. E. (2008). Validity of the structural formula method for layer charge determination of smectites: A re-evaluation of published data. Applied Clay Science, 42(1), 1–7. Recovered from: https://doi.org/10.1016/j.clay.2008.02.002 DOI: https://doi.org/10.1016/j.clay.2008.02.002
Darder, M., Colilla, M., & Ruiz-Hitzky, E. (2003). Biopolymer−Clay Nanocomposites Based on Chitosan Intercalated in Montmorillonite. Chemistry of Materials, 15(20), 3774–3780. Recovered from: https://doi.org/10.1021/cm0343047 DOI: https://doi.org/10.1021/cm0343047
Duan, F., Zhu, Y., Liu, Y., Mu, B., & Wang, A. (2024). Green Fabrication of Porous Adsorbent with Structural Evolution of Mixed-Dimension Attapulgite Clay for Efficient Removal of Methylene Blue and Sustainable Utilization. ACS Sustainable Resource Management, 1(4), 670–680. Recovered from: https://doi.org/10.1021/acssusresmgt.3c00086 DOI: https://doi.org/10.1021/acssusresmgt.3c00086
El-habacha, M., Miyah, Y., Lagdali, S., Mahmoudy, G., Dabagh, A., Chiban, M., Sinan, F., … & Zerbet, M. (2023). General overview to understand the adsorption mechanism of textile dyes and heavy metals on the surface of different clay materials. Arabian Journal of Chemistry, 16(11), 105248. Recovered from: https://doi.org/10.1016/j.arabjc.2023.105248 DOI: https://doi.org/10.1016/j.arabjc.2023.105248
Ewis, D., Ba-Abbad, M. M., Benamor, A., & El-Naas, M. H. (2022). Adsorption of organic water pollutants by clays and clay minerals composites: A comprehensive review. Applied Clay Science, 229, 106686. Recovered from: https://doi.org/10.1016/j.clay.2022.106686 DOI: https://doi.org/10.1016/j.clay.2022.106686
Gao, L., Lu, Y., Chen, S., Ma, X., & Zhao, W. (2024). Fe3O4 Nanoparticle/Hyper-Cross-Linked Polymer Composites for Dye Removal. ACS Applied Nano Materials, 7(9), 9960–9967. Recovered from: https://doi.org/10.1021/acsanm.3c06264 DOI: https://doi.org/10.1021/acsanm.3c06264
Goyal, N., Amar, A., Gulati, S., & Varma, R. S. (2023). Cyclodextrin-Based Nanosponges as an Environmentally Sustainable Solution for Water Treatment: A Review. ACS Applied Nano Materials, 6(15), 13766–13791. Recovered from: https://doi.org/10.1021/acsanm.3c02026 DOI: https://doi.org/10.1021/acsanm.3c02026
Hammer, Ø., Harper, D. & Ryan, P. D. (2001). PAST: PALEONTOLOGICAL STATISTICS SOFTWARE PACKAGE FOR EDUCATION AND DATA ANALYSIS. Paleontologia Eletrônica, 4(1). Recovered from: https://palaeo-electronica.org/2001_1/past/issue1_01.htm
Hu, Q., Lan, R., He, L., Liu, H., & Pei, X. (2023). A critical review of adsorption isotherm models for aqueous contaminants: Curve characteristics, site energy distribution and common controversies. Journal of Environmental Management, 329, 117104. Recovered from: https://doi.org/10.1016/j.jenvman.2022.117104 DOI: https://doi.org/10.1016/j.jenvman.2022.117104
Iftikhar, S., Rashid, K., Ul Haq, E., Zafar, I., Alqahtani, F. K., & Iqbal Khan, M. (2020). Synthesis and characterization of sustainable geopolymer green clay bricks: An alternative to burnt clay brick. Construction and Building Materials, 259, 119659. Recovered from: https://doi.org/10.1016/j.conbuildmat.2020.119659 DOI: https://doi.org/10.1016/j.conbuildmat.2020.119659
Jawad, A. H., & Abdulhameed, A. S. (2020). Facile synthesis of crosslinked chitosan-tripolyphosphate/kaolin clay composite for decolourization and COD reduction of remazol brilliant blue R dye: Optimization by using response surface methodology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 605, 125329. Recovered from: https://doi.org/10.1016/j.colsurfa.2020.125329 DOI: https://doi.org/10.1016/j.colsurfa.2020.125329
Jong, S. M. de, Spiers, C. J., & Busch, A. (2014). Development of swelling strain in smectite clays through exposure to carbon dioxide. International Journal of Greenhouse Gas Control, 24, 149–161. Recovered from: https://doi.org/10.1016/j.ijggc.2014.03.010 DOI: https://doi.org/10.1016/j.ijggc.2014.03.010
Jeon, I., & Nam, K. (2019). Change in the site density and surface acidity of clay minerals by acid or alkali spills and its effect on pH buffering capacity. Scientific Reports, 9(1), Article 1. Recovered from: https://doi.org/10.1038/s41598-019-46175-y DOI: https://doi.org/10.1038/s41598-019-46175-y
Kausar, A., Naeem, K., Hussain, T., Nazli, Z.-H., Bhatti, H. N., Jubeen, F., Nazir, A., & Iqbal, M. (2019). Preparation and characterization of chitosan/clay composite for direct Rose FRN dye removal from aqueous media: Comparison of linear and non-linear regression methods. Journal of Materials Research and Technology, 8(1), 1161–1174. Recovered from: https://doi.org/10.1016/j.jmrt.2018.07.020 DOI: https://doi.org/10.1016/j.jmrt.2018.07.020
Khan, M. S., Khalid, M., & Shahid, M. (2020). What triggers dye adsorption by metal organic frameworks? The current perspectives. Materials Advances, 1(6), 1575–1601. Recovered from: https://doi.org/10.1039/D0MA00291G DOI: https://doi.org/10.1039/D0MA00291G
Kwon, D., & Kim, J. (2020). Silver-doped ZnO for photocatalytic degradation of methylene blue. Korean Journal of Chemical Engineering, 37(7), 1226–1232. Recovered from: https://doi.org/10.1007/s11814-020-0520-7 DOI: https://doi.org/10.1007/s11814-020-0520-7
Laaraibi, A., Moughaoui, F., Damiri, F., Ouakit, A., Charhouf, I., Hamdouch, S., Jaafari, A., … & Berrada, A. B. (2018). Chitosan-Clay Based (CS-NaBNT) Biodegradable Nanocomposite Films for Potential Utility in Food and Environment. In Dongre, Rejendra. Chitin-Chitosan—Myriad Functionalities in Science and Technology. IntechOpen. Recovered https://doi.org/10.5772/intechopen.76498 DOI: https://doi.org/10.5772/intechopen.76498
Langmuir, I. (1918). The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. Journal of the American Chemical Society, 40(9), 1361–1403. Recovered from: https://doi.org/10.1021/ja02242a004 DOI: https://doi.org/10.1021/ja02242a004
Leite, S. Q. M., Colodete, C. H. A., Dieguez, L. C., & San Gil, R. A. S. (2000). Extração de ferro de esmectita brasileira com emprego do método ditionito-citrato-bicarbonato. Química Nova, 23, 297–302. Recovered from: https://doi.org/10.1590/S0100-40422000000300002 DOI: https://doi.org/10.1590/S0100-40422000000300002
Lertsutthiwong, P., Noomun, K., Khunthon, S., & Limpanart, S. (2012). Influence of chitosan characteristics on the properties of biopolymeric chitosan–montmorillonite. Progress in Natural Science: Materials International, 22(5), 502–508. Recovered from: https://doi.org/10.1016/j.pnsc.2012.07.008 DOI: https://doi.org/10.1016/j.pnsc.2012.07.008
Madejová, J. (2003). FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31(1), 1–10. Recovered from: https://doi.org/10.1016/S0924-2031(02)00065-6 DOI: https://doi.org/10.1016/S0924-2031(02)00065-6
Marmier, T., Szczepanski, C. R., Candet, C., Zenerino, A., Godeau, R.-P., & Godeau, G. (2020). Investigation on Mecynorhina torquata Drury, 1782 (Coleoptera, Cetoniidae, Goliathini) cuticle: Surface properties, chitin and chitosan extraction. International Journal of Biological Macromolecules, 164, 1164–1173. Recovered from: https://doi.org/10.1016/j.ijbiomac.2020.07.155 DOI: https://doi.org/10.1016/j.ijbiomac.2020.07.155
Marrakchi, F., Hameed, B. H., & Hummadi, E. H. (2020). Mesoporous biohybrid epichlorohydrin crosslinked chitosan/carbon–clay adsorbent for effective cationic and anionic dyes adsorption. International Journal of Biological Macromolecules, 163, 1079–1086. Recovered from: https://doi.org/10.1016/j.ijbiomac.2020.07.032 DOI: https://doi.org/10.1016/j.ijbiomac.2020.07.032
Messa, L. L., Froes, J. D., Souza, C. F., & Faez, R. (2016). Híbridos de Quitosana-Argila para Encapsulamento e Liberação Sustentada do Fertilizante Nitrato de Potássio. Química Nova, 39, 1215–1220. Recovered from: https://doi.org/10.21577/0100-4042.20160133 DOI: https://doi.org/10.21577/0100-4042.20160133
Methneni, N., Morales-González, J. A., Jaziri, A., Mansour, H. B., & Fernandez-Serrano, M. (2021). Persistent organic and inorganic pollutants in the effluents from the textile dyeing industries: Ecotoxicology appraisal via a battery of biotests. Environmental Research, 196, 110956. Recovered from: https://doi.org/10.1016/j.envres.2021.110956 DOI: https://doi.org/10.1016/j.envres.2021.110956
Mittal, H., Alili, A. A., & Alhassan, S. M. (2023). Latest progress in utilizing gum hydrogels and their composites as high-efficiency adsorbents for removing pollutants from wastewater. Journal of Molecular Liquids, 391, 123392. Recovered from: https://doi.org/10.1016/j.molliq.2023.123392 DOI: https://doi.org/10.1016/j.molliq.2023.123392
Mudzielwana, R., & Gitari, M. W. (2021). Removal of fluoride from groundwater using MnO2 bentonite-smectite rich clay soils composite.Groundwater for Sustainable Development, 14, 100623. Recovered from: https://doi.org/10.1016/j.gsd.2021.100623 DOI: https://doi.org/10.1016/j.gsd.2021.100623
Nizam El-Din, H. M., & Ibraheim, D. M. (2021). Biological applications of nanocomposite hydrogels prepared by gamma-radiation copolymerization of acrylic acid (AAc) onto plasticized starch (PLST)/montmorillonite clay (MMT)/chitosan (CS) blends. International Journal of Biological Macromolecules, 192, 151–160. Recovered from: https://doi.org/10.1016/j.ijbiomac.2021.09.196 DOI: https://doi.org/10.1016/j.ijbiomac.2021.09.196
Nunes, Y. L., Menezes, F. L. de, Sousa de, I. G., Cavalcante, A. L. G., Cavalcante, F. T. T., Silva Moreira, K. da, Oliveira, A. L. B. de, ... & Santos, J. C. S. dos. (2021). Chemical and physical Chitosan modification for designing enzymatic industrial biocatalysts: How to choose the best strategy? International Journal of Biological Macromolecules, 181, 1124–1170. Recovered from: https://doi.org/10.1016/j.ijbiomac.2021.04.004 DOI: https://doi.org/10.1016/j.ijbiomac.2021.04.004
Oliveira, M. F. L. de, Oliveira, M. G. de, & Leite, M. C. A. M. (2011). Nanocompósitos de poliamida 6 e argila organofílica: Estudo da cristalinidade e propriedades mecânicas. Polímeros, 21, 78–82. Recovered from: https://doi.org/10.1590/S0104-14282011005000015 DOI: https://doi.org/10.1590/S0104-14282011005000015
Oliveira, M. P. de, Schnorr, C., Rosa Salles, T. da, Silva Bruckmann, F. da, Baumann, L., Muller, E. I., Silva Garcia, W. J. da, ... & Rhoden, C. R. B. (2023). Efficient Uptake of Angiotensin-Converting Enzyme II Inhibitor Employing Graphene Oxide-Based Magnetic Nanoadsorbents. Water, 15(2), Article 2. Recovered from: https://doi.org/10.3390/w15020293 DOI: https://doi.org/10.3390/w15020293
Ouaddari, H., Abbou, B., Lebkiri, I., Habsaoui, A., Ouzzine, M., & Fath Allah, R. (2024). Removal of Methylene Blue by adsorption onto natural and purified clays: Kinetic and thermodynamic study. Chemical Physics Impact, 8, 100405. Recovered from: https://doi.org/10.1016/j.chphi.2023.100405 DOI: https://doi.org/10.1016/j.chphi.2023.100405
Pakizeh, M., Moradi, A., & Ghassemi, T. (2021). Chemical extraction and modification of chitin and chitosan from shrimp shells. European Polymer Journal, 159, 110709. Recovered from: https://doi.org/10.1016/j.eurpolymj.2021.110709 DOI: https://doi.org/10.1016/j.eurpolymj.2021.110709
Rashid, T. U., Kabir, S. M. F., Biswas, M. C., & Bhuiyan, M. A. R. (2020). Sustainable Wastewater Treatment via Dye–Surfactant Interaction: A Critical Review. Industrial & Engineering Chemistry Research, 59(21), 9719–9745. Recovered from: https://doi.org/10.1021/acs.iecr.0c00676 DOI: https://doi.org/10.1021/acs.iecr.0c00676
Rekik, S. B., Gassara, S., Bouaziz, J., Deratani, A., & Baklouti, S. (2017). Development and characterization of porous membranes based on kaolin/chitosan composite. Applied Clay Science, 143, 1–9. Recovered from: https://doi.org/10.1016/j.clay.2017.03.008 DOI: https://doi.org/10.1016/j.clay.2017.03.008
Rezende, M. J. C., Pereira, M. S. C., Santos, G. F. N., Aroeira, G. O. P., Albuquerque Jr., T. C., Suarez, P. A. Z., & Pinto, A. C. (2012). Preparation, characterisation and evaluation of brazilian clay-based catalysts for use in esterification reactions. Journal of the Brazilian Chemical Society, 23, 1209–1215. Recovered from: https://doi.org/10.1590/S0103-50532012000700003 DOI: https://doi.org/10.1590/S0103-50532012000700003
Ribeiro, G. A. C., Silva, D. S. A., Santos, C. C. dos, Vieira, A. P., Bezerra, C. W. B., Tanaka, A. A., & Santana, S. A. A. (2017). Removal of Remazol brilliant violet textile dye by adsorption using rice hulls. Polímeros, 27, 16–26. Recovered from: https://doi.org/10.1590/0104-1428.2386 DOI: https://doi.org/10.1590/0104-1428.2386
Rocha, F. N., Suarez, P. A. Z., & Guimarães, E. M. (2014). Clays and their Applications in Pottery and Ceramics Materials. Revista Virtual de Química, 6(4). Recovered from: https://doi.org/10.5935/1984-6835.20140070 DOI: https://doi.org/10.5935/1984-6835.20140070
Saba, B., Kjellerup, B. V., & Christy, A. D. (2021). Eco-friendly bio-electro-degradation of textile dyes wastewater. Bioresource Technology Reports, 15, 100734. Recovered from: https://doi.org/10.1016/j.biteb.2021.100734 DOI: https://doi.org/10.1016/j.biteb.2021.100734
Santos, B. F. dos, Maciel, A. M., Tavares, A. A., Araújo Fernandes, C. Q. B. de, Sousa, W. J. B. de, Lia Fook, M. V., Farias Leite, I., & Lima Silva, S. M. de. (2018). Synthesis and Preparation of Chitosan/Clay Microspheres: Effect of Process Parameters and Clay Type. Materials, 11(12), Article 12. Recovered from: https://doi.org/10.3390/ma11122523 DOI: https://doi.org/10.3390/ma11122523
Shen, J., Huang, G., An, C., Xin, X., Huang, C., & Rosendahl, S. (2018). Removal of Tetrabromobisphenol A by adsorption on pinecone-derived activated charcoals: Synchrotron FTIR, kinetics and surface functionality analyses. Bioresource Technology, 247, 812–820. Recovered from: https://doi.org/10.1016/j.biortech.2017.09.177 DOI: https://doi.org/10.1016/j.biortech.2017.09.177
Silva, A. O., Cunha, R. S., Hotza, D., & Machado, R. A. F. (2021). Chitosan as a matrix of nanocomposites: A review on nanostructures, processes, properties, and applications. Carbohydrate Polymers, 272, 118472. Recovered from: https://doi.org/10.1016/j.carbpol.2021.118472 DOI: https://doi.org/10.1016/j.carbpol.2021.118472
Singh, R., Munya, V., Are, V. N., Nayak, D., & Chattopadhyay, S. (2021). A Biocompatible, pH-Sensitive, and Magnetically Separable Superparamagnetic Hydrogel Nanocomposite as an Efficient Platform for the Removal of Cationic Dyes in Wastewater Treatment. ACS Omega, 6(36), 23139–23154. Recovered from: https://doi.org/10.1021/acsomega.1c02720 DOI: https://doi.org/10.1021/acsomega.1c02720
Singhapong, W., Jaroenworaluck, A., & Manpetch, P. (2024). Novel and Reusable Graphene Oxide-Coated Reticulated Open-Cell Mullite Foams for Methylene Blue Dye Adsorption. ACS Omega, 9(5), 5541–5547. Recovered from: https://doi.org/10.1021/acsomega.3c07569 DOI: https://doi.org/10.1021/acsomega.3c07569
Sips, R. (1948). On the Structure of a Catalyst Surface. The Journal of Chemical Physics, 16(5), 490–495. Recovered from: https://doi.org/10.1063/1.1746922 DOI: https://doi.org/10.1063/1.1746922
Sirajudheen, P., Poovathumkuzhi, N. C., Vigneshwaran, S., Chelaveettil, B. M., & Meenakshi, S. (2021). Applications of chitin and chitosan based biomaterials for the adsorptive removal of textile dyes from water—A comprehensive review. Carbohydrate Polymers, 273, 118604. Recovered from: https://doi.org/10.1016/j.carbpol.2021.118604 DOI: https://doi.org/10.1016/j.carbpol.2021.118604
Staroszczyk, H., Sztuka, K., Wolska, J., Wojtasz-Pająk, A., & Kołodziejska, I. (2014). Interactions of fish gelatin and chitosan in uncrosslinked and crosslinked with EDC films: FT-IR study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117, 707–712. Recovered from: https://doi.org/10.1016/j.saa.2013.09.044 DOI: https://doi.org/10.1016/j.saa.2013.09.044
Salles, T. da R., Schnorr, C., Bruckmann, F. da S., Vicensi, E. C., Viana, A. R., Schuch, A. P., Garcia W. de J. da S., ... & Rhoden, C. R. B. (2023). Effective diuretic drug uptake employing magnetic carbon nanotubes derivatives: Adsorption study and in vitro geno-cytotoxic assessment. Separation and Purification Technology, 315, 123713. Recovered from: https://doi.org/10.1016/j.seppur.2023.123713 DOI: https://doi.org/10.1016/j.seppur.2023.123713
Topcu, C., Caglar, B., Onder, A., Coldur, F., Caglar, S., Guner, E. K., Cubuk, O., & Tabak, A. (2018). Structural characterization of chitosan-smectite nanocomposite and its application in the development of a novel potentiometric monohydrogen phosphate-selective sensor. Materials Research Bulletin, 98, 288–299. Recovered from: https://doi.org/10.1016/j.materresbull.2017.09.068 DOI: https://doi.org/10.1016/j.materresbull.2017.09.068
Tran, N. N., Escribà-Gelonch, M., Sarafraz, M. M., Pho, Q. H., Sagadevan, S., & Hessel, V. (2023). Process Technology and Sustainability Assessment of Wastewater Treatment. Industrial & Engineering Chemistry Research, 62(3), 1195–1214. Recovered from: https://doi.org/10.1021/acs.iecr.2c03471 DOI: https://doi.org/10.1021/acs.iecr.2c03471
Vasconcelos, M. W., Gonçalves, S., Oliveira, E. C. de, Rubert, S., & Ghisi, N. de C. (2022). Textile effluent toxicity trend: A scientometric review. Journal of Cleaner Production, 366, 132756. Recovered from: https://doi.org/10.1016/j.jclepro.2022.132756 DOI: https://doi.org/10.1016/j.jclepro.2022.132756
Vithalkar, S. H., & Jugade, R. M. (2020). Adsorptive removal of crystal violet from aqueous solution by cross-linked chitosan coated bentonite. Materials Today: Proceedings, 29, 1025–1032. Recovered from: https://doi.org/10.1016/j.matpr.2020.04.705 DOI: https://doi.org/10.1016/j.matpr.2020.04.705
Wade C. Driscoll. (1996). Robustness of the ANOVA and Tukey-Kramer statistical tests. Computers & Industrial Engineering, 31(1–2), 265–268. Recovered from: https://doi.org/10.1016/0360-8352(96)00127-1 DOI: https://doi.org/10.1016/0360-8352(96)00127-1
Zhao, T., Xu, S., & Hao, F. (2023). Differential adsorption of clay minerals: Implications for organic matter enrichment. Earth-Science Reviews, 246, 104598. Recovered from: https://doi.org/10.1016/j.earscirev.2023.104598 DOI: https://doi.org/10.1016/j.earscirev.2023.104598
Zhou, Q., Gao, Q., Luo, W., Yan, C., Ji, Z., & Duan, P. (2015). One-step synthesis of amino-functionalized attapulgite clay nanoparticles adsorbent by hydrothermal carbonization of chitosan for removal of methylene blue from wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 470, 248–257. Recovered from: https://doi.org/10.1016/j.colsurfa.2015.01.092 DOI: https://doi.org/10.1016/j.colsurfa.2015.01.092
Zouaoui, F., Bourouina-Bacha, S., Bourouina, M., Jaffrezic-Renault, N., Zine, N., & Errachid, A. (2020). Electrochemical sensors based on molecularly imprinted chitosan: A review. TrAC Trends in Analytical Chemistry, 130, 115982. Recovered from: https://doi.org/10.1016/j.trac.2020.115982 DOI: https://doi.org/10.1016/j.trac.2020.115982
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Ciência e Natura

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Para acessar a DECLARAÇÃO DE ORIGINALIDADE E EXCLUSIVIDADE E CESSÃO DE DIREITOS AUTORAIS clique aqui.
Diretrizes Éticas para Publicação de Revistas
A revista Ciência e Natura está empenhada em garantir a ética na publicação e na qualidade dos artigos.
A conformidade com padrões de comportamento ético é, portanto, esperada de todas as partes envolvidas: Autores, Editores e Revisores.
Em particular,
Autores: Os Autores devem apresentar uma discussão objetiva sobre a importância do trabalho de pesquisa, bem como detalhes e referências suficientes para permitir que outros reproduzam as experiências. Declarações fraudulentas ou intencionalmente incorretas constituem comportamento antiético e são inaceitáveis. Artigos de Revisão também devem ser objetivos, abrangentes e relatos precisos do estado da arte. Os Autores devem assegurar que seu trabalho é uma obra totalmente original, e se o trabalho e / ou palavras de outros têm sido utilizadas, isso tem sido devidamente reconhecido. O plágio em todas as suas formas constitui um comportamento publicitário não ético e é inaceitável. Submeter o mesmo manuscrito a mais de um jornal simultaneamente constitui um comportamento publicitário não ético e é inaceitável. Os Autores não devem submeter artigos que descrevam essencialmente a mesma pesquisa a mais de uma revista. O Autor correspondente deve garantir que haja um consenso total de todos os Co-autores na aprovação da versão final do artigo e sua submissão para publicação.
Editores: Os Editores devem avaliar manuscritos exclusivamente com base no seu mérito acadêmico. Um Editor não deve usar informações não publicadas na própria pesquisa do Editor sem o consentimento expresso por escrito do Autor. Os Editores devem tomar medidas de resposta razoável quando tiverem sido apresentadas queixas éticas relativas a um manuscrito submetido ou publicado.
Revisores: Todos os manuscritos recebidos para revisão devem ser tratados como documentos confidenciais. As informações ou ideias privilegiadas obtidas através da análise por pares devem ser mantidas confidenciais e não utilizadas para vantagens pessoais. As revisões devem ser conduzidas objetivamente e as observações devem ser formuladas claramente com argumentos de apoio, de modo que os Autores possam usá-los para melhorar o artigo. Qualquer Revisor selecionado que se sinta desqualificado para rever a pesquisa relatada em um manuscrito ou sabe que sua rápida revisão será impossível deve notificar o Editor e desculpar-se do processo de revisão. Os Revisores não devem considerar manuscritos nos quais tenham conflitos de interesse resultantes de relacionamentos ou conexões competitivas, colaborativas ou outras conexões com qualquer dos autores, empresas ou instituições conectadas aos documentos.

