Graphene oxide assessment on the germination of Persian clover and buckwheat seeds

Authors

DOI:

https://doi.org/10.5902/2179460X84266

Keywords:

Fagopyrum esculentum Moench, Graphene, Germination process, Nanomaterial, Toxicity, Trifolium resupinatum L.

Abstract

The increase in the use of graphene oxide (GO) allows different studies in several fields, and raise concerns about its possible toxic effect on the environment, especially in the early growth of plants. Thus, this study aimed to evaluate the effect of GO on the germination of Persian clover and buckwheat seeds. The seeds were placed on germitest paper in different concentrations of graphene oxide (0, 125, 250, and 500 mg L-1) and kept in a germination chamber at 20 °C (photoperiod of 12 hours). The evaluated parameters were seed germination and seedling growth (length and dry mass). Graphene oxide did not show toxic effects on seed germination and initial growth of both species up to 500 mg L-1. In this context, understanding the role of graphene oxide in the germination process and the development of plants will be able to contribute positively to understanding its possible environmental impacts when used in large quantities in ecosystems.

Downloads

Download data is not yet available.

Author Biographies

Raquel Stefanello, Universidade Federal de Santa Maria

Bióloga, Doutora em Agronomia.

Wagner Jesus da Silva Garcia, Universidade Federal de Santa Maria

Físico, Doutor em Física.

Theodoro da Rosa Salles, Franciscan University

Graduando em Engenharia Química.

Cristiano Rodrigo Bohn Rhoden, Franciscan University

Master’s degree in Chemistry and PhD in Nanosciences

 

References

Abu-Nada, A., Abdala, A., & McKay, G. (2021). Removal of phenols and dyes from aqueous solutions using graphene and graphene composite adsorption: a review. Journal of Environmental Chemical Engineering, 9(2). doi: https://doi.org/10.1016/j.jece.2021.105858

Ahamed, A. J., & Loganathan, K. (2021). Reduced graphene oxide as effective adsorbent for removal of heavy metals in groundwater of Amaravathi River basin, Tamil Nadu. Geology, Ecology, and Landscapes, 7(1), 59-68. doi: https://doi.org/10.1080/24749508.2021.1923273

Bhattacharya, N., Cahill, D. M., Yang, W., & Kochar, M. (2022). Graphene as a nano-delivery vehicle in agriculture - current knowledge and future prospects. Critical Reviews in Biotechnology, 11, 1-19. doi: https://doi.org/10.1080/07388551.2022.2090315

Bruckmann, F. S. da, Viana, A. R., Lopes, L. Q. S., Santos, R. C. V., Muller, E. I., Mortari, S. R., & Rhoden, C. R. B. (2022). Synthesis, characterization, and biological activity evaluation of magnetite-functionalized eugenol. Journal of Inorganic and Organometallic Polymers and Materials, 32(4), 1459-1472. doi: https://doi.org/10.1007/s10904-021-02207-7

Chen, J., Mu, Q., & Tian, X. (2019). Phytotoxicity of graphene oxide on rice plants is concentration-dependent. Materials Express, 9(6), 635-640. doi: https://doi.org/10.1166/mex.2019.1538

Chen, J., Yang, L., Li, S., & Ding, W. (2018). Various physiological response to graphene oxide and amine-functionalized graphene oxide in wheat (Triticum aestivum). Molecules, 23(5). doi: https://doi.org/10.3390/molecules23051104

Choudhary, P., & Das, S. K. (2019). Bio-reduced graphene oxide as a nanoscale antimicrobial coating for medical devices. ACS Omega, 4(1), 387-397. doi: https://doi.org/10.1021/acsomega.8b02787

Diraki, A., Mackey, H. R., McKay, G., & Abdala, A. (2019). Removal of emulsified and dissolved diesel oil from high salinity wastewater by adsorption onto graphene oxide. Journal of Environmental Chemical Engineering, 7(3). doi: https://doi.org/10.1016/j.jece.2019.103106

Fadeel, B., Bussy, C., Merino, S., Vázquez, E., Flahaut, E., Mouchet, F., Evariste, L., Gauthier, L., Koivisto, A., Vogel, U., Martín, C., Delogu, L. G., Buerki-Thurnherr, T., Wick, P., Beloin- Saint-Pierre, D., Hischier, R., Pelin, M., Carniel, F., Mauro, T., & Bianco, A. (2018). Safety assessment of graphene-based materials: Focus on human health and the environment. ACS Nano, 12(11), 10582-10620. doi: https://doi.org/10.1021/acsnano.8b04758

Gao, C., Zhang, G. L., & Liu, Y. Z. (2019). Effects of graphene oxide exposure on germination and seedling growth of rice and wheat. Hans Journal of Soil Science, 7(4), 251-261. doi: https://doi.org/10.12677/HJSS.2019.74031

González-García, Y., López-Vargas, E. R., Cadenas-Pliego, G., Benavides-Mendoza, A., González- Morales, S., Robledo-Olivo, A., Alpuche-Solís, Á. G., & Juárez-Maldonado, A. (2019). Impact of carbon nanomaterials on the antioxidant system of tomato seedlings. International Journal of Molecular Sciences, 22(20). doi: https://doi.org/10.3390/ijms20235858

Goodwin, D. G., Adeleye, A. S., Sung, L., Ho, K. T., Burgess, R. M., & Petersen, E. J. (2018). Detection and quantification of graphene-family nanomaterials in the environment. Environmental Science & Technology, 52(8), 4491-4513. doi: https://doi.org/10.1021/acs. est.7b04938

Guo, X., Zhao, J., Wang, R., Zhang, H., Xing, B., Naeem, M., Yao, T., Li, R., Xu, R., Zhang, Z., & Wu, J. (2021). Effects of graphene oxide on tomato growth in different stages. Plant Physiology and Biochemistry, 162, 447-455. doi: https://doi.org/10.1016/j.plaphy.2021.03.013

Hatel, R., Majdoub, S. E., Bakour, A., Khenfouch, M., & Baitoul, M. (2018). Graphene oxide/Fe3O4 nanorods composite: structural and Raman investigation. Journal of Physics: Conference Series, 1081. doi: https://doi.org/10.1088/1742-6596/1081/1/012006

He, Y., Hu, R., Zhong, Y., Zhao, X., Chen, Q., & Zhu, H. (2018). Graphene oxide as a water transporter promoting germination of plants in soil. Nano Research, 11, 1928-1937. doi: https://doi.org/10.1007/s12274-017-1810-1

Karamipour, M., Fathi, S., & Safari, M. (2021). Removal of phenol from aqueous solution using MOF/GO: synthesis, characteristic, adsorption performance and mechanism. International Journal of Environmental Analytical Chemistry. doi: https://doi.org/10.1080/03067319.2021.1915299

Kaymak, H. Ç., Sevim, M., & Metin, Ö. (2022). Graphene oxide: a promising material for the germination of melon seeds under salinity stress. Turkish Journal of Agriculture and Forestry, 46, 863-874. doi: https://doi.org/10.55730/1300-011X.3048

Kazlauskas, M., Jurgelėnė, Ž., Šemčuk, S., Jokšas, K., Kazlauskienė, N., & Montvydienė, D. (2023). Effect of graphene oxide on the uptake, translocation and toxicity of metal mixture to Lepidium sativum L. plants: Mitigation of metal phytotoxicity due to nanosorption. Chemosphere, 312(1). doi: https://doi.org/10.1016/j.chemosphere.2022.137221

Kellici, S., Acord, J., Ball, J., Reehal, H. S., Morgan, D., & Saha, B. A. (2014). Single rapid route for the synthesis of reduced graphene oxide with antibacterial activities. RSC Advances, 4(29), 14858–14861. doi: https://doi.org/10.1039/c3ra47573e

Krzyzanowski, F. C., França-Neto, J. B., Gomes-Junior, F. G., & Nakagawa, J. (2020). Testes de vigor baseados em desempenho de plântulas. In F. C. Krzyzanowski, R. D. Vieira, J. B. França-Neto, & J. Marcos-Filho (Eds.), Vigor de sementes: conceitos e testes (pp. 79-140). Londrina: ABRATES.

Ministério da Agricultura, Pecuária e Abastecimento. (2009). Regras para análise de sementes. Secretaria de Defesa Agropecuária. Brasília: Mapa/ACS.

Nasiri, M., Ahmadzadeh, H., & Amiri, A. (2021). Organophosphorus pesticides extraction with polyvinyl alcohol coated magnetic graphene oxide particles and analysis by gas chromatography-mass spectrometry: application to apple juice and environmental water. Talanta, 227. doi: https://doi.org/10.1016/j.talanta.2020.122078

Nunes, F. B., Bruckmann, F. S da, Salles, T. R da, & Rhoden, C. R. B. (2023). Study of phenobarbital removal from the aqueous solutions employing magnetite-functionalized chitosan. Environmental Science and Pollution Research, 30(5), 12658–12671. doi: https://doi.org/10.1007/s11356-022-23075-9

Oliveira, M. P., Schnorr, C., Salles, T. R., Bruckmann, F. S. da, Baumann, L., Muller, E. I., Garcia, W. J., Oliveira, A. H., Silva, L. F. O., & Rhoden, C. R. B. (2023). Efficient uptake of angiotensin-converting enzyme II inhibitor employing graphene oxide-based magnetic nanoadsorbents. Water, 15(2). doi: https://doi.org/10.3390/w15020293

Park, S., Choi, K. S., Kim, S., Gwon, Y., & Kim, J. (2020). Graphene oxide-assisted promotion of plant growth and stability. Nanomaterials, 10(4). doi: https://doi.org/10.3390/nano10040758

Priyadharshini, S. D., Manikandan, S., Kiruthiga, R., Rednam, U., Babu, P. S., Subbaiya, R., Karmegam, N., Kim, W., & Govarthanan, M. (2022). Graphene oxide-based nanomaterials for the treatment of pollutants in the aquatic environment: Recent trends and perspectives – a review. Environmental Pollution, 306. doi: https://doi.org/10.1016/j.envpol.2022.119377

Rhoden, C. R. B., Bruckmann, F. S. da, Salles, T. R., Kaufmann, C. G., Jr., Mortari S. R. (2021). Study from the influence of magnetite onto removal of hydrochlorothiazide from aqueous solutions applying magnetic graphene oxide. Journal of Water Process Engineering, 43. doi: https://doi.org/10.1016/j.jwpe.2021.102262

Salles, T. R., Rodrigues, H. B., Bruckmann, F. S. da, Alves, L. C. S., Mortari, S. R., & Rhoden, C. R. B. (2020). Graphene oxide optimization synthesis for application on laboratory of Universidade Franciscana, Disciplinarum Scientia: Série Ciências Naturais e Tecnológicas, 21(3), 15-26. doi: https://doi.org/10.37779/nt.v21i3.3632

Salles, T. R., Schnorr, C., Bruckmann, F. S. da, Vicensi, E. C., Viana, A. R., Schuch, A., Garcia, W. J., Silva, L. F. O., Oliveira, A. H., Mortari, S. R., & Rhoden, C. R. B. (2023). Effective diuretic drug uptake employing magnetic carbon nanotubes derivatives: Adsorption study and in vitro geno-cytotoxic assessment. Separation and Purification Technology, 315. doi: https://doi.org/10.1016/j.seppur.2023.123713

Samadi, S., Lajayer, B. A., Moghiseh, E., & Rodríguez-Couto, S. (2021). Effect of carbon nanomaterials on cell toxicity, biomass production, nutritional and active compound accumulation in plants. Environmental Technology & Innovation, 21. doi: https://doi.org/10.1016/j.eti.2020.101323

Song, J., Cao, K., Duan, C., Luo, N., & Cui, X. (2020). Effects of graphene on Larix olgensis seedlings and soil properties of haplic cambisols in Northeast China. Forests, 11(3). doi: https://doi.org/10.3390/f11030258

Sun, C., Wang, Z., Zheng, H., Chen, L., & Li, F. (2021). Biodegradable and re-usable sponge materials made from chitin for efficient removal of microplastics. Journal of Hazardous Materials, 420. doi: https://doi.org/10.1016/j.jhazmat.2021.126599

Vargas, G. O., Schnorr, C., Nunes, F. B., Salles, T. R. da, Tonel, M. Z., Fagan, S. B., Silva, I. Z., Silva, L. F. O., Mortari, S. R., Dotto, G., & Rhoden, C. R. B. (2023). Highly furosemide uptake employing magnetic graphene oxide: DFT modeling combined to experimental approach. Journal of Molecular Liquids, 379. doi: https://doi.org/10.1016/j.molliq.2023.121652

Vochita, G., Oprica, L., Gherghel, D., Mihai, C. T., Boukherroub, R., & Lobiuc, A. (2019). Graphene oxide effects in early ontogenetic stages of Triticum aestivum L. seedlings. Ecotoxicology and Environmental Safety, 181, 345-352. doi: https://doi.org/10.1016/j.ecoenv.2019.06.026

Yang, Y., Zhang, R., Zhang, X., Chen, Z., Wang, H., & Li, P. C. H. (2022). Effects of graphene oxide on plant growth: A Review. Plants, 11(21). doi: https://doi.org/10.3390/plants11212826

Yin, L., Wang, Z., Wang, S., Xu, W., & Bao, H. (2018). Effects of graphene oxide and/or Cd2+ on seed germination, seedling growth, and uptake to Cd2+ in solution culture. Water, Air, & Soil Pollution, 229(151). doi: https://doi.org/10.1007/s11270-018-3809-y

Zhang, M., Gao, B., Chen, J., & Li, Y. (2015). Effects of graphene on seed germination and seedling growth. Journal of Nanoparticle Research, 17(78), 1-8. doi: https://doi.org/10.1007/s11051-015-2885-9

Zhang, P., Gao, B., Chen, J., & Li, Y. (2020). Graphene oxide-induced ph alteration, iron overload, and subsequent oxidative damage in rice (Oryza sativa L.): A new mechanism of nanomaterial phytotoxicity. Environmental Science & Technology, 54(6), 3181-3190. doi: https://doi.org/10.1021/acs.est.9b05794

Zhao, S., Wang, W., Chen, X., Gao, Y., Wu, X., Ding, M., & Duo, L. (2023). Graphene oxide affected root growth, anatomy, and nutrient uptake in alfalfa. Ecotoxicology and Environmental Safety, 250. doi: https://doi.org/10.1016/j.ecoenv.2022.114483

Zhao, S., Zhu, X., Mou, M., Wang, Z., & Duo, L. (2022). Assessment of graphene oxide toxicity on the growth and nutrient levels of white clover (Trifolium repens L.). Ecotoxicology and Environmental Safety, 234. doi: https://doi.org/10.1016/j.ecoenv.2022.113399

Zhu, Y., Weng, Y., Zhang, S., Liu, L., & Du, S. (2022). The nitrate uptake and growth of wheat were more inhibited under single-layer graphene oxide stress compared to multi-layer graphene oxide. Ecotoxicology and Environmental Safety, 247. doi: https://doi.org/10.1016/j.ecoenv.2022.114229

Published

2024-04-10

How to Cite

Stefanello, R., Garcia, W. J. da S., Salles, T. da R., & Rhoden, C. R. B. (2024). Graphene oxide assessment on the germination of Persian clover and buckwheat seeds. Ciência E Natura, 46, e84266. https://doi.org/10.5902/2179460X84266

Most read articles by the same author(s)