Graphene oxide assessment on the germination of Persian clover and buckwheat seeds
DOI:
https://doi.org/10.5902/2179460X84266Keywords:
Fagopyrum esculentum Moench, Graphene, Germination process, Nanomaterial, Toxicity, Trifolium resupinatum L.Abstract
The increase in the use of graphene oxide (GO) allows different studies in several fields, and raise concerns about its possible toxic effect on the environment, especially in the early growth of plants. Thus, this study aimed to evaluate the effect of GO on the germination of Persian clover and buckwheat seeds. The seeds were placed on germitest paper in different concentrations of graphene oxide (0, 125, 250, and 500 mg L-1) and kept in a germination chamber at 20 °C (photoperiod of 12 hours). The evaluated parameters were seed germination and seedling growth (length and dry mass). Graphene oxide did not show toxic effects on seed germination and initial growth of both species up to 500 mg L-1. In this context, understanding the role of graphene oxide in the germination process and the development of plants will be able to contribute positively to understanding its possible environmental impacts when used in large quantities in ecosystems.
Downloads
References
Abu-Nada, A., Abdala, A., & McKay, G. (2021). Removal of phenols and dyes from aqueous solutions using graphene and graphene composite adsorption: a review. Journal of Environmental Chemical Engineering, 9(2). doi: https://doi.org/10.1016/j.jece.2021.105858 DOI: https://doi.org/10.1016/j.jece.2021.105858
Ahamed, A. J., & Loganathan, K. (2021). Reduced graphene oxide as effective adsorbent for removal of heavy metals in groundwater of Amaravathi River basin, Tamil Nadu. Geology, Ecology, and Landscapes, 7(1), 59-68. doi: https://doi.org/10.1080/24749508.2021.1923273 DOI: https://doi.org/10.1080/24749508.2021.1923273
Bhattacharya, N., Cahill, D. M., Yang, W., & Kochar, M. (2022). Graphene as a nano-delivery vehicle in agriculture - current knowledge and future prospects. Critical Reviews in Biotechnology, 11, 1-19. doi: https://doi.org/10.1080/07388551.2022.2090315 DOI: https://doi.org/10.1080/07388551.2022.2090315
Bruckmann, F. S. da, Viana, A. R., Lopes, L. Q. S., Santos, R. C. V., Muller, E. I., Mortari, S. R., & Rhoden, C. R. B. (2022). Synthesis, characterization, and biological activity evaluation of magnetite-functionalized eugenol. Journal of Inorganic and Organometallic Polymers and Materials, 32(4), 1459-1472. doi: https://doi.org/10.1007/s10904-021-02207-7 DOI: https://doi.org/10.1007/s10904-021-02207-7
Chen, J., Mu, Q., & Tian, X. (2019). Phytotoxicity of graphene oxide on rice plants is concentration-dependent. Materials Express, 9(6), 635-640. doi: https://doi.org/10.1166/mex.2019.1538 DOI: https://doi.org/10.1166/mex.2019.1538
Chen, J., Yang, L., Li, S., & Ding, W. (2018). Various physiological response to graphene oxide and amine-functionalized graphene oxide in wheat (Triticum aestivum). Molecules, 23(5). doi: https://doi.org/10.3390/molecules23051104 DOI: https://doi.org/10.3390/molecules23051104
Choudhary, P., & Das, S. K. (2019). Bio-reduced graphene oxide as a nanoscale antimicrobial coating for medical devices. ACS Omega, 4(1), 387-397. doi: https://doi.org/10.1021/acsomega.8b02787 DOI: https://doi.org/10.1021/acsomega.8b02787
Diraki, A., Mackey, H. R., McKay, G., & Abdala, A. (2019). Removal of emulsified and dissolved diesel oil from high salinity wastewater by adsorption onto graphene oxide. Journal of Environmental Chemical Engineering, 7(3). doi: https://doi.org/10.1016/j.jece.2019.103106 DOI: https://doi.org/10.1016/j.jece.2019.103106
Fadeel, B., Bussy, C., Merino, S., Vázquez, E., Flahaut, E., Mouchet, F., Evariste, L., Gauthier, L., Koivisto, A., Vogel, U., Martín, C., Delogu, L. G., Buerki-Thurnherr, T., Wick, P., Beloin- Saint-Pierre, D., Hischier, R., Pelin, M., Carniel, F., Mauro, T., & Bianco, A. (2018). Safety assessment of graphene-based materials: Focus on human health and the environment. ACS Nano, 12(11), 10582-10620. doi: https://doi.org/10.1021/acsnano.8b04758 DOI: https://doi.org/10.1021/acsnano.8b04758
Gao, C., Zhang, G. L., & Liu, Y. Z. (2019). Effects of graphene oxide exposure on germination and seedling growth of rice and wheat. Hans Journal of Soil Science, 7(4), 251-261. doi: https://doi.org/10.12677/HJSS.2019.74031 DOI: https://doi.org/10.12677/HJSS.2019.74031
González-García, Y., López-Vargas, E. R., Cadenas-Pliego, G., Benavides-Mendoza, A., González- Morales, S., Robledo-Olivo, A., Alpuche-Solís, Á. G., & Juárez-Maldonado, A. (2019). Impact of carbon nanomaterials on the antioxidant system of tomato seedlings. International Journal of Molecular Sciences, 22(20). doi: https://doi.org/10.3390/ijms20235858 DOI: https://doi.org/10.3390/ijms20235858
Goodwin, D. G., Adeleye, A. S., Sung, L., Ho, K. T., Burgess, R. M., & Petersen, E. J. (2018). Detection and quantification of graphene-family nanomaterials in the environment. Environmental Science & Technology, 52(8), 4491-4513. doi: https://doi.org/10.1021/acs. est.7b04938 DOI: https://doi.org/10.1021/acs.est.7b04938
Guo, X., Zhao, J., Wang, R., Zhang, H., Xing, B., Naeem, M., Yao, T., Li, R., Xu, R., Zhang, Z., & Wu, J. (2021). Effects of graphene oxide on tomato growth in different stages. Plant Physiology and Biochemistry, 162, 447-455. doi: https://doi.org/10.1016/j.plaphy.2021.03.013 DOI: https://doi.org/10.1016/j.plaphy.2021.03.013
Hatel, R., Majdoub, S. E., Bakour, A., Khenfouch, M., & Baitoul, M. (2018). Graphene oxide/Fe3O4 nanorods composite: structural and Raman investigation. Journal of Physics: Conference Series, 1081. doi: https://doi.org/10.1088/1742-6596/1081/1/012006 DOI: https://doi.org/10.1088/1742-6596/1081/1/012006
He, Y., Hu, R., Zhong, Y., Zhao, X., Chen, Q., & Zhu, H. (2018). Graphene oxide as a water transporter promoting germination of plants in soil. Nano Research, 11, 1928-1937. doi: https://doi.org/10.1007/s12274-017-1810-1 DOI: https://doi.org/10.1007/s12274-017-1810-1
Karamipour, M., Fathi, S., & Safari, M. (2021). Removal of phenol from aqueous solution using MOF/GO: synthesis, characteristic, adsorption performance and mechanism. International Journal of Environmental Analytical Chemistry. doi: https://doi.org/10.1080/03067319.2021.1915299 DOI: https://doi.org/10.1080/03067319.2021.1915299
Kaymak, H. Ç., Sevim, M., & Metin, Ö. (2022). Graphene oxide: a promising material for the germination of melon seeds under salinity stress. Turkish Journal of Agriculture and Forestry, 46, 863-874. doi: https://doi.org/10.55730/1300-011X.3048 DOI: https://doi.org/10.55730/1300-011X.3048
Kazlauskas, M., Jurgelėnė, Ž., Šemčuk, S., Jokšas, K., Kazlauskienė, N., & Montvydienė, D. (2023). Effect of graphene oxide on the uptake, translocation and toxicity of metal mixture to Lepidium sativum L. plants: Mitigation of metal phytotoxicity due to nanosorption. Chemosphere, 312(1). doi: https://doi.org/10.1016/j.chemosphere.2022.137221 DOI: https://doi.org/10.1016/j.chemosphere.2022.137221
Kellici, S., Acord, J., Ball, J., Reehal, H. S., Morgan, D., & Saha, B. A. (2014). Single rapid route for the synthesis of reduced graphene oxide with antibacterial activities. RSC Advances, 4(29), 14858–14861. doi: https://doi.org/10.1039/c3ra47573e DOI: https://doi.org/10.1039/c3ra47573e
Krzyzanowski, F. C., França-Neto, J. B., Gomes-Junior, F. G., & Nakagawa, J. (2020). Testes de vigor baseados em desempenho de plântulas. In F. C. Krzyzanowski, R. D. Vieira, J. B. França-Neto, & J. Marcos-Filho (Eds.), Vigor de sementes: conceitos e testes (pp. 79-140). Londrina: ABRATES.
Ministério da Agricultura, Pecuária e Abastecimento. (2009). Regras para análise de sementes. Secretaria de Defesa Agropecuária. Brasília: Mapa/ACS.
Nasiri, M., Ahmadzadeh, H., & Amiri, A. (2021). Organophosphorus pesticides extraction with polyvinyl alcohol coated magnetic graphene oxide particles and analysis by gas chromatography-mass spectrometry: application to apple juice and environmental water. Talanta, 227. doi: https://doi.org/10.1016/j.talanta.2020.122078 DOI: https://doi.org/10.1016/j.talanta.2020.122078
Nunes, F. B., Bruckmann, F. S da, Salles, T. R da, & Rhoden, C. R. B. (2023). Study of phenobarbital removal from the aqueous solutions employing magnetite-functionalized chitosan. Environmental Science and Pollution Research, 30(5), 12658–12671. doi: https://doi.org/10.1007/s11356-022-23075-9 DOI: https://doi.org/10.1007/s11356-022-23075-9
Oliveira, M. P., Schnorr, C., Salles, T. R., Bruckmann, F. S. da, Baumann, L., Muller, E. I., Garcia, W. J., Oliveira, A. H., Silva, L. F. O., & Rhoden, C. R. B. (2023). Efficient uptake of angiotensin-converting enzyme II inhibitor employing graphene oxide-based magnetic nanoadsorbents. Water, 15(2). doi: https://doi.org/10.3390/w15020293 DOI: https://doi.org/10.3390/w15020293
Park, S., Choi, K. S., Kim, S., Gwon, Y., & Kim, J. (2020). Graphene oxide-assisted promotion of plant growth and stability. Nanomaterials, 10(4). doi: https://doi.org/10.3390/nano10040758 DOI: https://doi.org/10.3390/nano10040758
Priyadharshini, S. D., Manikandan, S., Kiruthiga, R., Rednam, U., Babu, P. S., Subbaiya, R., Karmegam, N., Kim, W., & Govarthanan, M. (2022). Graphene oxide-based nanomaterials for the treatment of pollutants in the aquatic environment: Recent trends and perspectives – a review. Environmental Pollution, 306. doi: https://doi.org/10.1016/j.envpol.2022.119377 DOI: https://doi.org/10.1016/j.envpol.2022.119377
Rhoden, C. R. B., Bruckmann, F. S. da, Salles, T. R., Kaufmann, C. G., Jr., Mortari S. R. (2021). Study from the influence of magnetite onto removal of hydrochlorothiazide from aqueous solutions applying magnetic graphene oxide. Journal of Water Process Engineering, 43. doi: https://doi.org/10.1016/j.jwpe.2021.102262 DOI: https://doi.org/10.1016/j.jwpe.2021.102262
Salles, T. R., Rodrigues, H. B., Bruckmann, F. S. da, Alves, L. C. S., Mortari, S. R., & Rhoden, C. R. B. (2020). Graphene oxide optimization synthesis for application on laboratory of Universidade Franciscana, Disciplinarum Scientia: Série Ciências Naturais e Tecnológicas, 21(3), 15-26. doi: https://doi.org/10.37779/nt.v21i3.3632 DOI: https://doi.org/10.37779/nt.v21i3.3632
Salles, T. R., Schnorr, C., Bruckmann, F. S. da, Vicensi, E. C., Viana, A. R., Schuch, A., Garcia, W. J., Silva, L. F. O., Oliveira, A. H., Mortari, S. R., & Rhoden, C. R. B. (2023). Effective diuretic drug uptake employing magnetic carbon nanotubes derivatives: Adsorption study and in vitro geno-cytotoxic assessment. Separation and Purification Technology, 315. doi: https://doi.org/10.1016/j.seppur.2023.123713 DOI: https://doi.org/10.1016/j.seppur.2023.123713
Samadi, S., Lajayer, B. A., Moghiseh, E., & Rodríguez-Couto, S. (2021). Effect of carbon nanomaterials on cell toxicity, biomass production, nutritional and active compound accumulation in plants. Environmental Technology & Innovation, 21. doi: https://doi.org/10.1016/j.eti.2020.101323 DOI: https://doi.org/10.1016/j.eti.2020.101323
Song, J., Cao, K., Duan, C., Luo, N., & Cui, X. (2020). Effects of graphene on Larix olgensis seedlings and soil properties of haplic cambisols in Northeast China. Forests, 11(3). doi: https://doi.org/10.3390/f11030258 DOI: https://doi.org/10.3390/f11030258
Sun, C., Wang, Z., Zheng, H., Chen, L., & Li, F. (2021). Biodegradable and re-usable sponge materials made from chitin for efficient removal of microplastics. Journal of Hazardous Materials, 420. doi: https://doi.org/10.1016/j.jhazmat.2021.126599 DOI: https://doi.org/10.1016/j.jhazmat.2021.126599
Vargas, G. O., Schnorr, C., Nunes, F. B., Salles, T. R. da, Tonel, M. Z., Fagan, S. B., Silva, I. Z., Silva, L. F. O., Mortari, S. R., Dotto, G., & Rhoden, C. R. B. (2023). Highly furosemide uptake employing magnetic graphene oxide: DFT modeling combined to experimental approach. Journal of Molecular Liquids, 379. doi: https://doi.org/10.1016/j.molliq.2023.121652 DOI: https://doi.org/10.1016/j.molliq.2023.121652
Vochita, G., Oprica, L., Gherghel, D., Mihai, C. T., Boukherroub, R., & Lobiuc, A. (2019). Graphene oxide effects in early ontogenetic stages of Triticum aestivum L. seedlings. Ecotoxicology and Environmental Safety, 181, 345-352. doi: https://doi.org/10.1016/j.ecoenv.2019.06.026 DOI: https://doi.org/10.1016/j.ecoenv.2019.06.026
Yang, Y., Zhang, R., Zhang, X., Chen, Z., Wang, H., & Li, P. C. H. (2022). Effects of graphene oxide on plant growth: A Review. Plants, 11(21). doi: https://doi.org/10.3390/plants11212826 DOI: https://doi.org/10.3390/plants11212826
Yin, L., Wang, Z., Wang, S., Xu, W., & Bao, H. (2018). Effects of graphene oxide and/or Cd2+ on seed germination, seedling growth, and uptake to Cd2+ in solution culture. Water, Air, & Soil Pollution, 229(151). doi: https://doi.org/10.1007/s11270-018-3809-y DOI: https://doi.org/10.1007/s11270-018-3809-y
Zhang, M., Gao, B., Chen, J., & Li, Y. (2015). Effects of graphene on seed germination and seedling growth. Journal of Nanoparticle Research, 17(78), 1-8. doi: https://doi.org/10.1007/s11051-015-2885-9 DOI: https://doi.org/10.1007/s11051-015-2885-9
Zhang, P., Gao, B., Chen, J., & Li, Y. (2020). Graphene oxide-induced ph alteration, iron overload, and subsequent oxidative damage in rice (Oryza sativa L.): A new mechanism of nanomaterial phytotoxicity. Environmental Science & Technology, 54(6), 3181-3190. doi: https://doi.org/10.1021/acs.est.9b05794 DOI: https://doi.org/10.1021/acs.est.9b05794
Zhao, S., Wang, W., Chen, X., Gao, Y., Wu, X., Ding, M., & Duo, L. (2023). Graphene oxide affected root growth, anatomy, and nutrient uptake in alfalfa. Ecotoxicology and Environmental Safety, 250. doi: https://doi.org/10.1016/j.ecoenv.2022.114483 DOI: https://doi.org/10.1016/j.ecoenv.2022.114483
Zhao, S., Zhu, X., Mou, M., Wang, Z., & Duo, L. (2022). Assessment of graphene oxide toxicity on the growth and nutrient levels of white clover (Trifolium repens L.). Ecotoxicology and Environmental Safety, 234. doi: https://doi.org/10.1016/j.ecoenv.2022.113399 DOI: https://doi.org/10.1016/j.ecoenv.2022.113399
Zhu, Y., Weng, Y., Zhang, S., Liu, L., & Du, S. (2022). The nitrate uptake and growth of wheat were more inhibited under single-layer graphene oxide stress compared to multi-layer graphene oxide. Ecotoxicology and Environmental Safety, 247. doi: https://doi.org/10.1016/j.ecoenv.2022.114229 DOI: https://doi.org/10.1016/j.ecoenv.2022.114229
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ciência e Natura
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.