Prediction of corn genetic bases grain productivity by phenological and meteorological variables

Authors

DOI:

https://doi.org/10.5902/2179460X83990

Keywords:

Zea mays, Regression tree, Global solar radiation, Thermal sum

Abstract

The objective of this study was to determine if it is possible to predict the grain yield of maize genotypes using phenological and meteorological variables. An experiment was conducted with maize genotypes at five sowing dates. On the first sowing date (September 21, 2021) 71 genotypes were sown (46 single hybrids, 14 triple hybrids, 3 double hybrids and 8 varieties). In the other four sowing dates (October 20, 2021, November 20, 2021, December 20, 2021 and January 30, 2022) 78 genotypes were sown (47 single hybrids, 15 triple hybrids, 8 double hybrids and 8 varieties). For each genotype and sowing date, the phenological variables, grain yield, accumulated global solar radiation and the thermal sum in the vegetative and reproductive stages were obtained. For each maize genetic base, principal component analysis was applied and the parameters of the regression tree algorithm for predicting grain yield as a function of phenological and meteorological variables were estimated. The global solar radiation accumulated in the vegetative and reproductive stages is the main variable that determines the grain yield of triple and double hybrids; and simple hybrids and maize varieties, respectively.

Downloads

Author Biographies

Murilo Vieira Loro, Universidade Federal de Santa Maria

PhD student in Agronomy at the Federal University of Santa Maria

Alberto Cargnelutti Filho, Universidade Federal de Santa Maria

Professor in the department of Plant Science at the Federal University of Santa Maria

Vithória Morena Ortiz, Universidade Federal de Santa Maria

Master's student in Agronomy at the Federal University of Santa Maria

João Augusto Andretta, Universidade Federal de Santa Maria

Agronomy student at the Federal University of Santa Maria

Mikael Brum dos Reis, Universidade Federal de Santa Maria

Agronomy student at the Federal University of Santa Maria

Bruno Raul Schuller, Universidade Federal de Santa Maria

Agronomy student at the Federal University of Santa Maria

References

ALVARES, C. A.; STAPE, J. L.; SENTELHAS, P. C.; GONÇALVES, J. L. M.; SPAROVEK, G. Koppen’s climate classification map for Brazil. Meteorologische Zeitschrif, [S.l.], v. 22, n. 6, p. 711-728, 2013. DOI: https://doi.org/10.1127/0941-2948/2013/0507

ARNOLD, C. Y. Maximum-minimum temperatures as a basis for computing heat units. Journal of the American Society for Horticultural Sciences, v. 76, n. 1, p. 682-692, 1960.

BONELLI, L. E; MONZON, J. P; VERRUDO, A; RIZZALLI, R. H; ANDRADE, F. H. Maize grain yield components and source-sink relationship as affected by the delay in sowing date. Field Crops Research, v. 198, n. 1, p. 215-225, 2016. DOI: https://doi.org/10.1016/j.fcr.2016.09.003

CARPENTIERI-PÍPOLO, C; SOUZA, A; SILVA, D. A; BARRETO, T. P; GARBUGLIO, D. D; FERREIRA, J. M. Avaliação de cultivares de milho crioulo em sistema de baixo nível tecnológico. Acta Scientiarum. Agronomy, v. 32, n. 2, p. 229-233, 2010. DOI: https://doi.org/10.4025/actasciagron.v32i2.430

CEDRIC, L. S; ADONI, W. Y. H; AWORKA, R; ZOUEU, J. T; MUTOMBO, F. K; KRICHEN, M; KIMPOLO, C. L. M. Crops yield prediction based on machine learning models: case of west african countries. Smart Agricultural Technology, v. 2, 100049, p. 1-14, 2022. DOI: https://doi.org/10.1016/j.atech.2022.100049

COELHO, A. E; SANGOI, L; BALBINOT JUNIOR, A. A; KUNESKI, H. F; MARTINS JÚNIOR, M. C. Nitrogen use efficiency and grain yield of corn hybrids as affected by nitrogen rates and sowing dates in subtropical environment. Revista Brasileira de Ciência do Solo, v. 46, e0210087, p. 1-21, 2022. DOI: https://doi.org/10.36783/18069657rbcs20210087

EMYGDIO, B. M; IGNACZAK, J. C; CARGNELUTTI FILHO, A. Potencial de rendimento de grãos de híbridos comerciais simples, triplos e duplos de milho. Revista Brasileira de Milho e Sorgo, v. 6, n. 1, p. 95-103, 2007. DOI: https://doi.org/10.18512/1980-6477/rbms.v6n1p95-103

FANCELLI, A. L; DOURADO NETO, D. Milho: manejo e produtividade. Piracicaba: ESALQ/USP, 2009. 181 p.

GE, J; XU, Y; ZHAO, M; ZHAN, M; CAO, C; CHEN, C; ZHOU, B. Effect of climatic conditions caused by seasons on maize yield, kernel filling and weight in entral China. Agronomy, v. 12, n. 8, p. 1-19, 2022. DOI: https://doi.org/10.3390/agronomy12081816

GUO, D; CHEN, C; LI, X; WANG, R; DING, Z; MA, W; WNAG, X; LI, C; ZHAO, M; LI, M; ZHOU, B. Adjusting sowing date improves the photosynthetic capacity and grain yield by optimizing temperature condition around flowering of summer maize in the North China Plain. Frontiers in Plant Science, v. 13, n. 1, p. 1-16, 2022. DOI: https://doi.org/10.3389/fpls.2022.934618

GUTTMAN, L. Some necessary conditions for common factor analysis. Psychometrika, [S.l.], v. 19, n. 2, p. 149-162, 1954. DOI: https://doi.org/10.1007/BF02289162

JEONG, J. H; RESOP, J. P; MUELLER, N. D; FLEISHER, D. H; YUN, K; BUTLER, E. E; TIMLIN, D. J; SHIM, K. M; GERBER, J. S; REDDY, V. R; KIM, S. H. Random forests for global and regional crop yield predictions. PloS One, v. 11, n. 6, e0156571, 2016. DOI: https://doi.org/10.1371/journal.pone.0156571

JOLLIFFE, I. T.; CADIMA, J. Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, [S.l.], v. 374, p. 20150202, 2016. DOI: https://doi.org/10.1098/rsta.2015.0202

KAISER, H. F. The varimax criterion for analytic rotation in factor analysis. Psychometrika, [S.l.], v. 23, n. 3, p. 187-200. 1958. DOI: https://doi.org/10.1007/BF02289233

LIMA, R; BORÉM, A. Melhoramento de Milho. Minas Gerais: UFV, 2018, 396p.

MAURO, G. di; CIPRIOTTI, P. A; GALLO, S; ROTUNDO, J. L. Environmental and management variables explain soybean yield gap variability in Central Argentina. European Journal of Agronomy, [S.l.], v. 99, p. 186-194, 2018. DOI: https://doi.org/10.1016/j.eja.2018.04.012

MELO, A. V; SANTOS, V. M; VARANDA, M. A. F; CARDOSO, D. P; DIAS, M. A. R. Desempenho agronômico de genótipos de milho submetidos ao estresse hídrico no Sul do estado do Tocantins. Revista Brasileira de Sorgo e Milho, v. 17, n. 2, p. 177-189, 2018. DOI: https://doi.org/10.18512/1980-6477/rbms.v17n2p177-189

MILBORROW, S. _rpart.plot: Plot 'rpart' Models: an Enhanced Version of 'plot.rpart'_. R package version 3.1.1, 2022. <https://CRAN.R-project.org/package=rpart.plot>. Acesso em: 25/04/2023.

R CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, 2023.

SAH, R. P; PRASAD, M; PANDIT, M; TUDU, V. K; CHAKRAVARTY, M. K; NARAYAN, S. C; RANA, M; MOHARANA, D. Impact of water deficit stress in maize: Phenology and yield components. Scientific Reports, v. 10, n. 2944, p. 1-15, 2020. DOI: https://doi.org/10.1038/s41598-020-59689-7

SANTOS, H. G; HACOMINE, P. K. T; ANJOS, L. H. C; OLIVEIRA, V. A; LUMBRERAS, J. F; COELHO, M. R; ALMEIDA, J. A; ARAUJO FILHO, J. C; OLIVEIRA, J. B; CUNHA, T. J. F. Sistema brasileiro de classificação de solos. 5. ed. Rio de Janeiro: Embrapa, 2018.

TAIZ, L.; ZEIGER, E.; MOLLER, I.M.; MURPHY, A. Fisiologia e desenvolvimento vegetal. 6ª ed., Porto Alegre: Artmed Editora, 2017. 858p.

THERNEAU, T.; ATKINSON, B. _rpart: Recursive Partitioning and Regression Trees_. R package version 4.1.19, 2022. <https://CRAN.R-project.org/package=rpart>.

VEENSTRA, R. L.; MESSINA, C. D.; BERNING, D.; HAAG, L. A.; CARTER, P.; HEFLEY, T. J.; PRASAD, P. V. V.; CIAMPITTI, I. A. Effect of tillers on corn yield: Exploring trait plasticity potential in unpredictable environments. Crop Science, [S.l.], v. 61, n. 1, p. 3660-3674, 2021. DOI: https://doi.org/10.1002/csc2.20576

ZHOU, B; YUE, Y; SUN, X; WANG, X; WANG, Z; MA, W; ZHAO, M. Maize Grain Yield and Dry Matter Production Responses to Variations in Weather Conditions. Agronomy Journal, v. 108, n. 1, p. 196-204, 2016. DOI: https://doi.org/10.2134/agronj2015.0196

Published

2025-03-14

How to Cite

Loro, M. V., Cargnelutti Filho, A., Ortiz, V. M., Andretta, J. A., Reis, M. B. dos, & Schuller, B. R. (2025). Prediction of corn genetic bases grain productivity by phenological and meteorological variables. Ciência E Natura, 47, e83990. https://doi.org/10.5902/2179460X83990

Most read articles by the same author(s)