Turbulence regimes in the stable boundary layer above the Amazon Rainforest
DOI:
https://doi.org/10.5902/2179460X75412Keywords:
Tropical forest, Turbulence regimes, Roughness sublayerAbstract
We identify two nocturnal turbulence regimes at different heights above the Amazon Forest and their variation in relation to the proximity of the forest canopy. We analyzed fast response data measured at the Uatumã Sustainable Development Reserve in central Amazonia, Brazil, during September 2021 to January 2022. Our results show that the threshold wind speed that separate the weak turbulence regime from strong turbulence regime increased as a function of the distance above the canopy (43 m, 50 m, 75 m, 100 m, 127 m, 151 m e 172 m). However, at 196 m, 223 m, 247 m, 274 m e 298 m height the change of the turbulence regime occurred at the same threshold wind speed. In contrast, at 316 m we evidenced only situations where the turbulence was weak. This pattern indicated that the structure and roughness of dense forest affect the turbulence structure.
Downloads
References
ACEVEDO, O. C.; COSTA, F. D.; OLIVEIRA, P. E.; PUHALES, F. S.; DEGRAZIA, G. A.; ROBERTI, D. R. The influence of submeso processes on stable boundary layer similarity relationships. Journal of the Atmospheric Sciences, v. 71, n. 1, p. 207–225, 2014.
ACEVEDO, O. C.; FITZJARRALD, D. R. In the core of the night-effects of intermittent mixing on a horizontally heterogeneous surface. Boundary-layer meteorology, Springer, v. 106, n. 1, p. 1–33, 2003.
ACEVEDO, O. C.; MAHRT, L.; PUHALES, F. S.; COSTA, F. D.; MEDEIROS, L. E.; DEGRAZIA, G. A. Contrasting structures between the decoupled and coupled states of the stable boundary layer. Quarterly Journal of the Royal Meteorological Society, v. 142, n. 695, p. 693–702, 2016.
ALVES, L. M.; MARENGO, J. A.; FU, R.; BOMBARDI, R. J. Sensitivity of amazon regional climate to deforestation. American Journal of Climate Change, Scientific Research Publishing, v. 6, n. 1, p.75–98, 2017.
ANDREAE, M. O.; ACEVEDO, O. C.; ARAÙJO, A.; ARTAXO, P.; BARBOSA, C. G. G.; BARBOSA, H. M. J.; BRITO, J.; CARBONE, S.; CHI, X.; CINTRA, B. B. L.; SILVA, N. F. da; DIAS, N. L.; DIAS-JÚNIOR, C. Q.; (...); WOLFF, S.; SERRANO, A. M. Yáñez. The amazon tall tower observatory (atto): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols. Atmospheric Chemistry and Physics, v. 15, n. 18, p. 10723–10776, 2015.
BETTS, R.; SANDERSON, M.; WOODWARD, S. Effects of large-scale amazon forest degradation on climate and air quality through fluxes of carbon dioxide, water, energy, mineral dust and isoprene. Philosophical Transactions of the Royal Society B: Biological Sciences, The Royal Society London, v. 363, n. 1498, p. 1873–1880, 2008.
BEZERRA, V. L.; DIAS-JÚNIOR, C. Q.; VALE, R. S.; SANTANA, R. A.; BOTÍA, S.; MANZI, A. O.; COHEN, J. C. P.; MARTINS, H. S.; CHAMECKI, M.; FUENTES, J. D. Near-surface atmospheric turbulence in the presence of a squall line above a forested and deforested region in the central amazon. Atmosphere, v. 12, n. 4, 2021. ISSN 2073-4433.
CHOR, T. L.; DIAS, N. L.; ARAÚJO, A.; WOLFF, S.; ZAHN, E.; MANZI, A.; TREBS, I.; SÁ, M. O.; TEIXEIRA, P. R.; SÖRGEL, M. Flux-variance and flux-gradient relationships in the roughness sublayer over the amazon forest. Agricultural and Forest Meteorology, v. 239, p. 213–222, 2017. ISSN 0168-1923.
DIAS-JÚNIOR, C. Q.; DIAS, N. L.; FUENTES, J. D.; CHAMECKI, M. Convective storms and non-classical low-level jets during high ozone level episodes in the amazon region: An arm/ goamazon case study. Atmospheric Environment, v. 155, p. 199–209, 2017.
DIAS-JÚNIOR, C. Q.; DIAS, N. L.; SANTOS, R. M. N. dos; SÖRGEL, M.; ARAÚJO, A.; TSOKAN-KUNKU, A.; DITAS, F.; SANTANA, R. A. de; RANDOW, C. von; SÁ, M. et al. Is there a classical inertial sublayer over the amazon forest? Geophysical Research Letters, Wiley Online Library, v. 46,n. 10, p. 5614–5622, 2019.
FINNIGAN, J. Turbulence in plant canopies. Annual Review of Fluid Mechanics, v. 32, n. 1, p. 519–571, 2000.
MAHRT, L.; SUN, J.; BLUMEN, W.; DELANY, T.; ONCLEY, S. Nocturnal boundary-layer regimes. Boundary-layer meteorology, Springer, v. 88, n. 2, p. 255–278, 1998.
MAHRT, L.; THOMAS, C.; RICHARDSON, S.; SEAMAN, N.; STAUFFER, D.; ZEEMAN, M. Non-stationary generation of weak turbulence for very stable and weak-wind conditions. Boundary- layer meteorology, Springer, v. 147, n. 2, p. 179–199, 2013.
RANDOW, C. V.; MANZI, A. O.; KRUIJT, B.; OLIVEIRA, P. D.; ZANCHI, F. B.; SILVA, R. d.; HOD-NETT, M. G.; GASH, J. H.; ELBERS, J. A.; CARDOSO, F. L. et al. Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in south west amazonia. Theoretical and Applied Climatology, Springer, v. 78, n. 1, p. 5–26, 2004.
SUN, J.; BURNS, S. P.; LENSCHOW, D. H.; BANTA, R.; NEWSOM, R.; COULTER, R.; FRASIER, S.; INCE, T.; NAPPO, C.; CUXART, J. et al. Intermittent turbulence associated with a density current passage in the stable boundary layer. Boundary-Layer Meteorology, Springer, v. 105, n. 2, p. 199–219, 2002.
SUN, J.; MAHRT, L.; BANTA, R. M.; PICHUGINA, Y. L. Turbulence regimes and turbulence intermit- tency in the stable boundary layer during cases-99. Journal of Atmospheric Sciences, American Meteorological Society, v. 69, n. 1, p. 338–351, 2012.
SUN, J.; TAKLE, E. S.; ACEVEDO, O. C. Understanding physical processes represented by the monin–obukhov bulk formula for momentum transfer. Boundary-Layer Meteorology, Springer, v. 177, n. 1, p. 69–95, 2020.
VICKERS, D.; GÖCKEDE, M.; LAW, B. Uncertainty estimates for 1-h averaged turbulence fluxes of carbon dioxide, latent heat and sensible heat. Tellus B: Chemical and Physical Meteorology, Taylor Francis, v. 62, n. 2, p. 87–99, 2010.
VICKERS, D.; MAHRT, L. Quality control and flux sampling problems for tower and aircraft data. Journal of Atmospheric and Oceanic Technology, American Meteorological Society, Boston MA, USA, v. 14, n. 3, p. 512 – 526, 1997.
ZAHN, E.; CHOR, T.; DIAS, N. A simple methodology for quality control of micrometeorological datasets. Am J Environ Eng, v. 6, n. 4A, p. 135–142, 2016.
ZERI, M.; SÁ, L. D. Horizontal and vertical turbulent fluxes forced by a gravity wave event in the nocturnal atmospheric surface layer over the amazon forest. Boundary-layer meteorology, Springer, v. 138, n. 3, p. 413–431, 2011.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ciência e Natura
![Creative Commons License](http://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.