Turbulence regimes in the stable boundary layer above the Amazon Rainforest

Authors

DOI:

https://doi.org/10.5902/2179460X75412

Keywords:

Tropical forest, Turbulence regimes, Roughness sublayer

Abstract

We identify two nocturnal turbulence regimes at different heights above the Amazon Forest and their variation in relation to the proximity of the forest canopy. We analyzed fast response data measured at the Uatumã Sustainable Development Reserve in central Amazonia, Brazil, during September 2021 to January 2022. Our results show that the threshold wind speed that separate the weak turbulence regime from strong turbulence regime increased as a function of the distance above the canopy (43 m, 50 m, 75 m, 100 m, 127 m, 151 m e 172 m). However, at 196 m, 223 m, 247 m, 274 m e 298 m height the change of the turbulence regime occurred at the same threshold wind speed. In contrast, at 316 m we evidenced only situations where the turbulence was weak. This pattern indicated that the structure and roughness of dense forest affect the turbulence structure.

Downloads

Download data is not yet available.

Author Biographies

Anne Cristiny Santos de Mendonça, National Institute of Amazonian Research

PhD student at the PPG in Climate and Environment, INPA/UEA, Brazil.

Authorship Contribution: Investigation; Data visualization (figures); Writing – original draft; Writing – review & editing.

Cléo Quaresma Dias Júnior, Federal Institute of Pará

Instituto Federal de Educação, Ciência e Tecnologia do Pará, Campus Belém, Brazil.

Authorship Contribution: Methodology; Supervision; Writing – review & editing.

Otavio Costa Acevedo, University of Oklahoma

The University of Oklahoma, Oklahoma, USA.

Authorship Contribution: Methodology; Supervision; Writing – review & editing.

Luca Mortarini, Institute of Atmospheric Sciences and Climate

Institute of Atmospheric Sciences and Climate (CNR-ISAC), Torino, Italy.

Authorship Contribution: Methodology; Supervision; Writing – review & editing.

Daniel Magnabosco Marra, Max Planck Institute of Biochemistry

Max Planck Institute for Biogeochemistry, Jena, Germany.

Authorship Contribution: Methodology; Supervision; Writing – review & editing.

References

ACEVEDO, O. C.; COSTA, F. D.; OLIVEIRA, P. E.; PUHALES, F. S.; DEGRAZIA, G. A.; ROBERTI, D. R. The influence of submeso processes on stable boundary layer similarity relationships. Journal of the Atmospheric Sciences, v. 71, n. 1, p. 207–225, 2014.

ACEVEDO, O. C.; FITZJARRALD, D. R. In the core of the night-effects of intermittent mixing on a horizontally heterogeneous surface. Boundary-layer meteorology, Springer, v. 106, n. 1, p. 1–33, 2003.

ACEVEDO, O. C.; MAHRT, L.; PUHALES, F. S.; COSTA, F. D.; MEDEIROS, L. E.; DEGRAZIA, G. A. Contrasting structures between the decoupled and coupled states of the stable boundary layer. Quarterly Journal of the Royal Meteorological Society, v. 142, n. 695, p. 693–702, 2016.

ALVES, L. M.; MARENGO, J. A.; FU, R.; BOMBARDI, R. J. Sensitivity of amazon regional climate to deforestation. American Journal of Climate Change, Scientific Research Publishing, v. 6, n. 1, p.75–98, 2017.

ANDREAE, M. O.; ACEVEDO, O. C.; ARAÙJO, A.; ARTAXO, P.; BARBOSA, C. G. G.; BARBOSA, H. M. J.; BRITO, J.; CARBONE, S.; CHI, X.; CINTRA, B. B. L.; SILVA, N. F. da; DIAS, N. L.; DIAS-JÚNIOR, C. Q.; (...); WOLFF, S.; SERRANO, A. M. Yáñez. The amazon tall tower observatory (atto): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols. Atmospheric Chemistry and Physics, v. 15, n. 18, p. 10723–10776, 2015.

BETTS, R.; SANDERSON, M.; WOODWARD, S. Effects of large-scale amazon forest degradation on climate and air quality through fluxes of carbon dioxide, water, energy, mineral dust and isoprene. Philosophical Transactions of the Royal Society B: Biological Sciences, The Royal Society London, v. 363, n. 1498, p. 1873–1880, 2008.

BEZERRA, V. L.; DIAS-JÚNIOR, C. Q.; VALE, R. S.; SANTANA, R. A.; BOTÍA, S.; MANZI, A. O.; COHEN, J. C. P.; MARTINS, H. S.; CHAMECKI, M.; FUENTES, J. D. Near-surface atmospheric turbulence in the presence of a squall line above a forested and deforested region in the central amazon. Atmosphere, v. 12, n. 4, 2021. ISSN 2073-4433.

CHOR, T. L.; DIAS, N. L.; ARAÚJO, A.; WOLFF, S.; ZAHN, E.; MANZI, A.; TREBS, I.; SÁ, M. O.; TEIXEIRA, P. R.; SÖRGEL, M. Flux-variance and flux-gradient relationships in the roughness sublayer over the amazon forest. Agricultural and Forest Meteorology, v. 239, p. 213–222, 2017. ISSN 0168-1923.

DIAS-JÚNIOR, C. Q.; DIAS, N. L.; FUENTES, J. D.; CHAMECKI, M. Convective storms and non-classical low-level jets during high ozone level episodes in the amazon region: An arm/ goamazon case study. Atmospheric Environment, v. 155, p. 199–209, 2017.

DIAS-JÚNIOR, C. Q.; DIAS, N. L.; SANTOS, R. M. N. dos; SÖRGEL, M.; ARAÚJO, A.; TSOKAN-KUNKU, A.; DITAS, F.; SANTANA, R. A. de; RANDOW, C. von; SÁ, M. et al. Is there a classical inertial sublayer over the amazon forest? Geophysical Research Letters, Wiley Online Library, v. 46,n. 10, p. 5614–5622, 2019.

FINNIGAN, J. Turbulence in plant canopies. Annual Review of Fluid Mechanics, v. 32, n. 1, p. 519–571, 2000.

MAHRT, L.; SUN, J.; BLUMEN, W.; DELANY, T.; ONCLEY, S. Nocturnal boundary-layer regimes. Boundary-layer meteorology, Springer, v. 88, n. 2, p. 255–278, 1998.

MAHRT, L.; THOMAS, C.; RICHARDSON, S.; SEAMAN, N.; STAUFFER, D.; ZEEMAN, M. Non-stationary generation of weak turbulence for very stable and weak-wind conditions. Boundary- layer meteorology, Springer, v. 147, n. 2, p. 179–199, 2013.

RANDOW, C. V.; MANZI, A. O.; KRUIJT, B.; OLIVEIRA, P. D.; ZANCHI, F. B.; SILVA, R. d.; HOD-NETT, M. G.; GASH, J. H.; ELBERS, J. A.; CARDOSO, F. L. et al. Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in south west amazonia. Theoretical and Applied Climatology, Springer, v. 78, n. 1, p. 5–26, 2004.

SUN, J.; BURNS, S. P.; LENSCHOW, D. H.; BANTA, R.; NEWSOM, R.; COULTER, R.; FRASIER, S.; INCE, T.; NAPPO, C.; CUXART, J. et al. Intermittent turbulence associated with a density current passage in the stable boundary layer. Boundary-Layer Meteorology, Springer, v. 105, n. 2, p. 199–219, 2002.

SUN, J.; MAHRT, L.; BANTA, R. M.; PICHUGINA, Y. L. Turbulence regimes and turbulence intermit- tency in the stable boundary layer during cases-99. Journal of Atmospheric Sciences, American Meteorological Society, v. 69, n. 1, p. 338–351, 2012.

SUN, J.; TAKLE, E. S.; ACEVEDO, O. C. Understanding physical processes represented by the monin–obukhov bulk formula for momentum transfer. Boundary-Layer Meteorology, Springer, v. 177, n. 1, p. 69–95, 2020.

VICKERS, D.; GÖCKEDE, M.; LAW, B. Uncertainty estimates for 1-h averaged turbulence fluxes of carbon dioxide, latent heat and sensible heat. Tellus B: Chemical and Physical Meteorology, Taylor Francis, v. 62, n. 2, p. 87–99, 2010.

VICKERS, D.; MAHRT, L. Quality control and flux sampling problems for tower and aircraft data. Journal of Atmospheric and Oceanic Technology, American Meteorological Society, Boston MA, USA, v. 14, n. 3, p. 512 – 526, 1997.

ZAHN, E.; CHOR, T.; DIAS, N. A simple methodology for quality control of micrometeorological datasets. Am J Environ Eng, v. 6, n. 4A, p. 135–142, 2016.

ZERI, M.; SÁ, L. D. Horizontal and vertical turbulent fluxes forced by a gravity wave event in the nocturnal atmospheric surface layer over the amazon forest. Boundary-layer meteorology, Springer, v. 138, n. 3, p. 413–431, 2011.

Published

2023-11-22

How to Cite

Mendonça, A. C. S. de, Dias Júnior, C. Q., Acevedo, O. C., Mortarini, L., & Marra, D. M. (2023). Turbulence regimes in the stable boundary layer above the Amazon Rainforest. Ciência E Natura, 45(esp. 2), e75412. https://doi.org/10.5902/2179460X75412

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 > >>