Cultivation of Tagetes patula L. in copper contaminated soils

Authors

DOI:

https://doi.org/10.5902/2179460X74452

Keywords:

Phytoremediation, Marigolds, Crop tolerance factors

Abstract

Leaf quality is one of the most valued commercial parameters in the cultivation of flowers and ornamental plants in vases, with soil or substrate conditions playing a fundamental role in its successful practice. Thus, the objective of this study was to evaluate the vegetative development of marigold (Tagetes patula L.) cultivated in soils contaminated by Cu, seeking to verify its soil phytoremediation potential for an agriculture with low environmental impact. The experiment took place in a greenhouse, using a completely randomized, 5x2 factorial design (added levels of Cu in the soil: 0 (no addition: control), 250, 500, 750 and 1,000 mg kg-1 of copper sulfate and soil pH corrections: 5.5 and 6.0, according to soil analysis report), with five replications. This work evaluated phytotechnical parameters and translocation factors, bioaccumulation, bioconcentration and Cu extraction rate in plants. It was observed that the development of marigold plants was similar on both soil pH corrections according to the addition of Cu, affecting the aesthetic quality of the plants. In this context, it is concluded that the marigold species is tolerant to the cultivation in soils with excess Cu and is characterized as a Cu extracting plant, with low soil phytoremediation potential.

Downloads

Author Biographies

Leandra de Carvalho Lacerda, Universidade Federal de Santa Maria

Environmental and Sanitary Engineering Student, UFSM.

Alexandre Swarowsky, Universidade Federal de Santa Maria

Agronomist, Master and Doctor in Soil Science, Coordinator of the Postgraduate Program in Agricultural Engineering at UFSM. Works in the areas of Water Resources Management, Agricultural and Environmental Engineering, with an emphasis on Soil and Water Conservation.

Janine Farias Menegaes, Universidade Estadual Paulista (Unesp)

Agricultural Engineer graduated from the Federal University of Santa Maria (UFSM, 2013). Master in Agricultural Engineering (UFSM, 2015), in the Agro-Environmental concentration area. PhD in Agronomy (UFSM, 2019), in the line of research into the development, evaluation and multiplication of superior genotypes. Graduated with a Full Degree from the Special Graduation Program for Teacher Training for Professional Education (PEG; UFSM, 2015), in the technological axis of Natural Resources. Agricultural Technique Qualification in Gardening (2008) and Administration Technique (2007) both from the UFSM Polytechnic College. With activities related to Agronomy, in the areas of seeds in production and processing, general horticulture, floriculture, landscaping, gardening, substrates, horticulture, hydroponics, medicinal plants, plant propagation, cultivation environments, agro-environmental engineering, soil phytoremediation, agroecological and socio-environmental education. With participation and development of research, teaching and extension projects in the aforementioned areas. Currently, she is a volunteer teacher at the Department of Phytotechnics at UFSM, in the disciplines of Plant Propagation, Landscaping and Floriculture.

Fernanda Alice Antonello Londero Backes, Universidade Federal de Santa Maria

Agronomist, Pedagogue, Master in Agronomy and PhD in Phytotechnics. It operates in areas related to landscaping, floriculture, urban afforestation, substrates, plant propagation, protected cultivation, mineral nutrition and plant fertilization.

Rodrigo Fernando dos Santos Salazar, Universidade de Passo Fundo

Chemical Eng., Master in Chemistry and PhD in Chemical Eng. Works in the areas related to Analytical Chemistry and Sample Preparation, with an emphasis on samples of food interest (processed and in natura) and agronomic interest (fertilizers, soils and leaf tissue).

References

Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M. & Sparovek, G. (2013). Koppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(1), 711-728, 2013. doi:10.1127/0941-2948/2013/0507 DOI: https://doi.org/10.1127/0941-2948/2013/0507

Andreazza, R. L., Bortolon, L., Pieniz, S., Bento, F. M. & Camargo, F. A. O. (2015). Evaluation of two Brazilian indigenous plants for phytostabilization and phytore¬mediation of copper-contaminated soils. Brazil Journal Biological, 75(4), 868-877, doi: 10.1590/1519-6984.01914 DOI: https://doi.org/10.1590/1519-6984.01914

Bellé, R. A. (2000). Caderno Didático de Floricultura. Santa Maria: UFSM.

Caille, N., Zhao, F. J. & Mcgrath, S. P. (2005). Comparison of root absorption, translo- cation and tolerance of arsenic in the hyperaccumulator Pteris vittata and the no- nhyperaccumulartor Pteris tremula. New Phytologist, 165(1), 755-761. doiI: 10.1111/j.1469-8137.2004.01239.x DOI: https://doi.org/10.1111/j.1469-8137.2004.01239.x

Ferreira, D. F. (2014). Sisvar: A guide for its bootstrap procedures in multiple comparisons. Ciência e Agro¬tecnologia, 38(2), 109-112. doi: 10.1590/S1413-70542014000200001 DOI: https://doi.org/10.1590/S1413-70542014000200001

Garcia, G., Faz, A. & Cunna, M. (2004). Performance of Piptatherum miliaceum (Smilo grass) in edaphic Pb and Zn phytoemediation over a short growth period. International Biodeterioration and Biodegradation, 54(2-3), 245-250. doi: 10.1016/j.ibiod.2004.06.004. DOI: https://doi.org/10.1016/j.ibiod.2004.06.004

Gomes, B. C. V., Kummer, G., Pereira, M. M. D. S. M., Izário Filho, H. J., Salazar, R. F. Dos S. & Vasconcellos, N. J. S. (2016). Toxicological potential of metals found in soil of cemeteries in Santa Maria-RS. Ambiente & Água, 11(1), 145-155. doi: 10.4136/ambi-agua.1723. DOI: https://doi.org/10.4136/ambi-agua.1723

Gonçalves-Júnior, A. C., Carvalho, E. A. Coelho, G. F. Schwantes, D., Nacke, H. & Moraes, A. J. (2013). Disponibilidade de nutrientes e elementos potencial- mente tóxicos para as plantas de hissopo em solo arenoso sob adubação mineral e orgânica. Scientia Agraria Paranaensis, 12(2), 105-114. doi:10.1818/sap.v12i2.6451. DOI: https://doi.org/10.18188/1983-1471/sap.v12n2p105-114

Mackie, K. A., Müller, T. & Kandeler, E. (2012). Remediation of copper in vineyards e A mini review. Journals Environmental Pollution, 167(1), 16-26. doi: 10.1016/j.envpol.2012.03.023. DOI: https://doi.org/10.1016/j.envpol.2012.03.023

Mainardi, J. C. C. T., Bellé, R. A. & Mainardi, L. (2004). Produção de crisântemo (Dendranthema grandiflora Tzvelev.) ‘Snowdon’ em vaso II: ciclo da cultivar, comprimento, largura e área da folha. Ciência Rural, 34(6), 1709-1714. doi: 10.1590/S0103-84782004000600007. DOI: https://doi.org/10.1590/S0103-84782004000600007

Marques, M., Aguiar, C. R. C. & Silva, J. J. L. S. (2011). Desafios, técnicas e barreiras sociais, econômicas e regulatórias na fitorremediação de solos contaminados. Revista Brasileira de Ciência do Solo, 35(1), 1-11. doi: 10.1590/S0100-06832011000100001. DOI: https://doi.org/10.1590/S0100-06832011000100001

Marsola, T., Miyazawa, M. & Pavan, M. A. (2005). Acumulação de cobre e zinco em tecidos do feijoeiro em relação com o extraído do solo. Revista Brasileira de Engenharia Agrícola e Ambiental, 9(1), 92–98. doi:10.1590/S1415-43662005000100014. DOI: https://doi.org/10.1590/S1415-43662005000100014

Menegaes, J. F., Backes, F. A. A. L., Bellé, R. A., Swarowsky, A. & Salazar, R. F. S. (2017). Avaliação do potencial fitorremediador de crisântemo em solo com excesso de cobre. Ornamental Horticulture, 23(1), 63-71. doi:10.14295/oh.v23i1.915. DOI: https://doi.org/10.14295/oh.v23i1.915

Menegaes, J. F., Swarowsky, A., Bellé, R. A. & Backes, F. A. A. L. (2019). Avaliação do potencial fitorremediador de cravina-chinesa cultivada em solo com excesso de cobre. Revista em Agronegócio e Meio Ambiente, 12(4), 1353-1370. doi:10.17765/2176-9168.2019v12n4p1353-1370. DOI: https://doi.org/10.17765/2176-9168.2019v12n4p1353-1370

Menegaes, J. F., Swarowsky, A., Bellé, R. A. & Backes, F. A. A. L. (2020). Desenvolvimento e potencial fitorremediador de espécies florícolas em resposta ao excesso de cobre no solo. Revista em Agronegócio e Meio Ambiente, 13(3), 1163-1183. doi: 10.17765/2176-9168.2020v13n3p1163-1183. DOI: https://doi.org/10.17765/2176-9168.2020v13n3p1163-1183

Mertens, J., Luyssaert, S. & Verheyen, K. (2005). Use and abuse of trace metal concentrations in plant tissue for biomonitoring and phytoextraction. Environmental Pollution, 138(1), 1-4. doi: 10.1016/J.ENVPOL.2005.01.002. DOI: https://doi.org/10.1016/j.envpol.2005.01.002

Nachtigall, G. R., Nogueirol, R. C. & Alleoni, L. R. F. (2007). Formas de cobre em solos de vinhedos em função do pH e da adição de cama-de-frango. Pesquisa Agropecuária Brasileira, 42(3), 427-434. doi: 10.1590/s0100-204x2007000300017. DOI: https://doi.org/10.1590/S0100-204X2007000300017

Oorts, K. (2013). Copper. In: Alloway, B. J. (ed.). Heavy metals in soils. Environmental Pollution. (pp. 1-28). Dordrecht: Springer.

Salazar, R. F. S., Alcântara, M. A. K. D. & Izário Filho, H. J. (2011). Evaluation of sample preparation methods and optimization of nickel determination in vegetable tissues. Revista Brasileira de Ciência do Solo, 35(1), 241-248. doi: 10.1590/S0100-06832011000100022. DOI: https://doi.org/10.1590/S0100-06832011000100022

Sonmez, S. S., Kaplani, M., Sonmez, N. K. & Kaya, H., Uzi, I. (2006). High level of Copper application to soil and leaves reduce the growth and yield of tomato plants. Scientia Agricola, 63(3), 213-218. doi: 10.1590/S0103-90162006000300001. DOI: https://doi.org/10.1590/S0103-90162006000300001

Sun, Y., Zhou, Q. & Dia O, C. (2008). Effects of cadmium and arsenic on growth and metal accumulation of Cd hyperaccumulator Solanum nigrum L. Bioresource Technolology, 99(1),1103-1110. doi: 10.1016/j.biortech.2007.02.035. DOI: https://doi.org/10.1016/j.biortech.2007.02.035

Tavares, S. R., Oliveira, S. A. & Camargo, C. M. (2013). Avaliação de espécies na fitorremediação de solos contaminados por metais pesados. Revista Holos, 5(1), 80-97. doi: 10.15628/holos.2013.1852. DOI: https://doi.org/10.15628/holos.2013.1852

Xia, Y. & Shen, G. (2007). Comparative studies of copper tolerance and uptake by three plant species of the genus elsholtzia. Bulletin of Environmental Contamination and Toxicology, 79(1), 53-57. doi: 10.1007/s00128-007-9222-7 DOI: https://doi.org/10.1007/s00128-007-9222-7

Yoon, J., Cao, X., Zhou, Q. & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 368(1), 456-464. doi: 10.1016/j.scitotenv.2006.01.016 DOI: https://doi.org/10.1016/j.scitotenv.2006.01.016

Downloads

Published

2025-03-14

How to Cite

Lacerda, L. de C., Swarowsky, A., Menegaes, J. F., Backes, F. A. A. L., & Salazar, R. F. dos S. (2025). Cultivation of Tagetes patula L. in copper contaminated soils. Ciência E Natura, 47, e74452. https://doi.org/10.5902/2179460X74452

Most read articles by the same author(s)