Study of the soil thermal regime in an area of natural vegetation in the Pampa biome
DOI:
https://doi.org/10.5902/2179460X45319Keywords:
Soil heat flux, Thermal conductivity, Soil TemperatureAbstract
This study analyzes the thermal variability of soil in a natural pasture area in the Pampa biome in southern Brazil. The dataset was collected at the experimental site located in Santa Maria - RS (SMA). The hybrid model is based on an analytical solution of the heat conduction equation and in experimental data. Soil thermal properties, thermal conductivity (), and thermal diffusivity () were estimated for different combinations of the clearness index and soil moisture. The values obtained in this study are the lowest in dry conditions and the highest ones in wet conditions. From the average daily cycles, the hysteresis phenomenon is more pronounced between soil heat flux () and global solar radiation for all clearness index ranges. The present analysis identified better relations between and temperature soil temperature at 0,05 m and air temperature. Hysteresis exhibit the same behavior when data are classified by soil moisture. The results obtained here can be used in models that intend to represent the behavior of energy exchange between the soil-surface atmosphere.
Downloads
References
ALLEN, R. G. et al. Allen_FAO1998. Irrigation and Drainage Paper No. 56, FAO, p. 300, 1998.
AN, K. et al. Estimation from Soil Temperature of Soil Thermal Diffusivity and Heat Flux in Sub-surface Layers. Boundary-Layer Meteorology, v. 158, n. 3, p. 473–488, 2016.
CARSLAW, HORATIO SCOTT AND JAEGER, J. C. Conduction of heat in solids. 2d ed. ed. [s.l.] Oxford: Clarendon Press, 1959.
HEUSINKVELD, B. G. et al. Surface energy balance closure in an arid region: Role of soil heat flux. Agricultural and Forest Meteorology, v. 122, n. 1–2, p. 21–37, 2004.
HORTON, R.; WIERENGA, P. J.; NIELSEN, D. R. Evaluation of Methods for Determining the Apparent Thermal Diffusivity of Soil Near the Surface1. Soil Science Society of America Journal, v. 47, n. 1, p. 25, 1983.
KUYE, A.; JAGTAP, S. S. Analysis of solar radiation data for Port Harcourt, Nigeria. Solar Energy, v. 49, n. 2, p. 139–145, 1992.
MARTHEWS, T. R.; MALHI, Y.; IWATA, H. Calculating downward longwave radiation under clear and cloudy conditions over a tropical lowland forest site: An evaluation of model schemes for hourly data. Theoretical and Applied Climatology, v. 107, n. 3–4, p. 461–477, 2012.
NIU, S.; LUO, Y.; FEI, S.; MONTAGNANI, L.; BOHRER, G.; JANSSENS, I. A.; GIELEN, B.; RAMBAL, S.; MOORS, E.; MATTEUCCI, G. Seasonal hysteresis of net ecosystem exchange in response to temperature change: patterns and causes. Global Change Biology, Wiley Online Library, v. 17, n. 10, p. 3102–3114, 2011.
OTUNLA, T. A.; OLADIRAN, E. O. Evaluation of soil thermal diffusivity algorithms at two equatorial sites in West Africa. Annals of Geophysics, v. 56, n. 1, 2013.
PEEL, MURRAY C; FINLAYSON, BRIAN L; MCMAHON, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, v. 4, p. 439–473, 2007.
PREVEDELLO, C. L. Física do solo com problemas resolvidos-2Ed. [S.l.: s.n.], 2015.
RUBERT, G. C. et al. Evapotranspiration of the Brazilian Pampa biome: Seasonality and influential factors. Water (Switzerland), v. 10, n. 12, p. 1–18, 2018.
WANG, L.; GAO, Z.; HORTON, R. Comparison of six algorithms to determine the soil apparent thermal diffusivity at a site in the loess plateau of China. Soil Science, v. 175, n. 2, p. 51–60, 2010.
ZHENG, H. et al. Hysteresis responses of evapotranspiration to meteorological factors at a diel timescale: Patterns and causes. PLoS ONE, v. 9, n. 6, p. 1–10, 2014.
ZUECCO, G. et al. A versatile index to characterize hysteresis between hydrological variables at the runoff event timescale. Hydrological Processes, v. 30, n. 9, p. 1449–1466, 2016.
Downloads
Published
How to Cite
Issue
Section
License
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.