Hysteresis loops in the evapotranspiration in a pasture area in south Brazil

Authors

  • Gisele Cristina Dotto Rubert Universidade Federal de Santa Maria, RS
  • Débora Regina Roberti Universidade Federal de Santa Maria, RS
  • Marcelo Bortoluzzi Diaz Universidade Federal de Santa Maria, RS

DOI:

https://doi.org/10.5902/2179460X30503

Keywords:

Evapotranspiration, Hysteresis, Environmental variables

Abstract

One of the main components of water and energy balance in terrestrial ecosystems, the evapotranspiration (ET), was estimated using the eddy covariance technique. To better understand these energy transfer processes it is necessary to know how the ET responds to different meteorological variables. The main objective of this work is to investigate the hysteresis response of ET to environmental variables including air temperature (Temp), vapor pressure deficit (DPV) and net radiation (Rn) at a diel timescale for a pasture area in southern Brazil. ET presents hysteresis with DPV and Temp, responding more strongly to the vapor pressure deficit.

Downloads

Download data is not yet available.

References

AHRENDS, H.E.; HASENEDER-LIND, R.; SCHWEEN, J.H.; CREWELL, S.; STADLER, A.; RASCHER, U. Diurnal Dynamics of Wheat Evapotranspiration Derived from Ground-Based Thermal Imagery. Remote Sens. 2014; 6: 9775-9801.

BAI, Y. et al. 2015. Hysteresis loops between canopy conductance of grapevines and meteorological variables in an oasis ecosystem. Agricultural and Forest Meteorology. 2015; 214–215: 319–327.

BALDOCCHI, D. D.; HINCKS, B. B.; MEYERS, T. P. Measuring biosphere atmosphere exchanges of biologycally related gases with micrometeorological methods. Ecology. 1988; v. 69, n. 5: 1331-1340.

IBGE - Instituto Brasileiro de Geografia e Estatística: Mapa exploratório de solos do Estado do Rio Grande do Sul, 2002. Disponível em: http://mapas.ibge.gov.br/tematicos/solos. Acesso em 25 maio 2017.

JACÓBSEN, L.O.; FONTANA, D.C.; SHIMABUKURO, Y.E. Efeitos associados a El Niño e La Niña na vegetação do Estado do Rio Grande do Sul observados através do NDVI/NOAA. Revista Brasileira de Meteorologia. 2004; v.19, n.2: 129-140.

LU N.; CHEN, S.; WILSKE, B.; SUN, G.; CHEN, J. Evapotranspiration and soil water relationships in a range of disturbed and undisturbed ecosystems in the semi-arid Inner Mongolia, China. Journal of Plant Ecology. 2011; 4: 49–60.

MALLICK, K. et al. Canopy-scale biophysical controls of transpiration and evaporation in the Amazon Basin, Hydrol. Earth Syst. Sci. 2016; 20: 4237–4264.

MAUDER, M.; FOKEN T. Impact of post-field data processing on eddy covariance flux estimates and energy balance closure. Meteorologische Zeitschrift. 2006; 15: 597-609.

MONCRIEFF, J. B. et al. A system to measure surface fluxes of momentum, sensible heat, water vapor and carbon dioxide. Journal of Hidrology. 1997; v.188-189: 589-611.

MONCRIEFF, J. B. et al. Averaging, detrending and filtering of eddy covariance time series, Handbook of micrometeorology: a guide for surface flux measurements, (Eds.) Lee, X.; Massman W. J.; Law B. E. Dordrecht: Kluwer Academic, 7-31, 2004.

NAKAI, T.; SHIMOYAMA, K. Ultrasonic anemometer angle of attack errors under turbulent conditions. Agricultural and Forest Meteorology. 2012; 18: 162-163.

NIMER, E. Climatologia do Brasil. Rio de Janeiro: IBGE, 1989. Disponível em: <http://biblioteca.ibge.gov.br/biblioteca-catalogo?id=281099&view=detalhes>. Acesso em: 16 novembro 2016.

NIU, S. et al. Seasonal hysteresis of net ecosystem exchange in response to temperature change: patterns and causes. Global Change Biology. 2011; 17: 3102–3114.

SANTOS, A. B. dos. et al. Rio Grande do Sul State's (Brazil) native grasses morphogenesis under rotational grazing during spring and summer. Ciência Rural, vol. 44, n. 1, p. 97-103, 2014. DOI: 10.1590/S0103-84782014000100016.

REICHSTEIN, M. et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology. 2005; 11: 1424-1439.

TAKAGI, K.; TSUBOYA, T.; TAKAHASHI, H. Diurnal hystereses of stomatal and bulk surface conductances in relation to vapor pressure deficit in a cool temperate wetland. Agricultural and Forest Meteorology. 1998; v. 91: 177-191.

VICKERS, D.; MAHRT L. Controle de qualidade e problemas de amostragem de fluxo para dados de torre e aeronave. Journal of Atmospheric and Oceanic Technology. 1997; 14: 512-526.

WANG, K.C.; DICKINSON, R.E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology and climatic variability. Reviews of Geophysics 50, RG2005, 2012.

WEBB, E. K.; PEARMAN, G. I.; LEUNING, R. Correction of flux measurements for density effects due to heat and water vapor transfer. Quarterly Journal of the Royal Meteorological Society. 1980; 106: 85–100.

WILSON, K. B. et al. Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology. 2002; 113: 223-243.

ZHANG, Q.; MANZONI, S.; KATUL, G.; PORPORATO, A.; YANG, D. The hysteretic evapotranspiration - vapor pressure deficit relation, J. Geophys. Res. Biogeosci. 2014; 119:125–140.

ZHENG, H.; WANG, Q.; ZHU, X.; LI, Y.; YU, G. Hysteresis Responses of Evapotranspiration to Meteorological Factors at a Diel Timescale: Patterns and Causes. PLoS ONE 9(6): e98857, 2014.

Published

2018-03-22

How to Cite

Rubert, G. C. D., Roberti, D. R., & Diaz, M. B. (2018). Hysteresis loops in the evapotranspiration in a pasture area in south Brazil. Ciência E Natura, 40, 26–31. https://doi.org/10.5902/2179460X30503

Most read articles by the same author(s)

1 2 3 4 5 6 > >>