Study of filling techniques for methane flow data in an area of flooded rice immediate

Authors

  • Lucas Augusto Fagundes Universidade Federal de Santa Maria, Santa Maria, RS
  • Cristiano Maboni Universidade Federal de Santa Maria, Santa Maria, RS
  • Maria Eduarda Pinheiro Universidade Federal de Santa Maria, Santa Maria, RS
  • Josue Sehnem Universidade Federal de Santa Maria, Santa Maria, RS
  • Marcelo Diaz Universidade Federal de Santa Maria, Santa Maria, RS
  • Debora Regina Roberti Universidade Federal de Santa Maria, Santa Maria, RS

DOI:

https://doi.org/10.5902/2179460X30763

Keywords:

Methane Flux, Gap Filling, MDV, LUT, LI

Abstract

Studies on the emission of methane gas (CH4) in agricultural ecosystems have received attention from the scientific community
because it plays an important role in the greenhouse effect. Flood irrigation agriculture, such as irrigated rice, represents a
considerable source of methane emissions (from 12 to 26 percent of all anthropogenic CH4 emissions in the world). Estimates of
CH4 emissions have also been performed through the eddy covariance technique. Although this methodology makes continuous
measurements of methane exchanges between the ecosystem and the atmosphere, failure to collect data can occur because the
system is quite sensitive, especially in the hard weather conditions. The gap filling in the methane data are essential to obtain
a daily or seasonal quantification of the emissions. In this study, different gap filling techniques are used to fill the CH4 fluxes
obtained by eddy covariance technique in an irrigated rice crop. The experimental data were obtained in Cachoeira do Sul - RS in
the period from 11/20/2015 to 04/30/2016. The Look-Up Table (LUT), which consists of filling gaps using averages of flux values
for periods with similar atmospheric conditions, was the technique that best close the gap in methane fluxes data.

Downloads

Download data is not yet available.

References

Acevedo, O. C., Moraes, O. L. L., Degrazia, G. A., Medeiros, L. E. (2006). Intermittency and the exchange of scalars in the nocturnal surface layer. Boundary-Layer Meteorology, 119(1), 41-55.

Alberto, M. C. R., Wassmann, R., Buresh, R. J., Quilty, J. R., Correa, T. Q., Sandro, J. M., Centeno, C. A. R. (2014). Measuring methane flux from irrigated rice fields by eddy covariance method using open-path gas analyzer. Field Crops Research, 160, 12-21.

Alvalá, P. C., Kirchhoff, V. W., Pavão, H. G. (1999). Metano Na Atmosfera. Biotecnologia Ciência & Desenvolvimento, 2, 39–43. Aubinet, M., Vesala, T., Papale, D. (2012). Eddy Covariance Measurements Over Urban Areas. Em: Eddy Covariance A Practical Guide to Measurement and Data Analysis-, August, p. 461.

Bhattacharyya, P., Neogi, S., Roy, K. S., Dash, P. K., Nayak, A. K., Mohapatra, T. (2014). Tropical low land rice ecosystem is a net carbon sink. Agriculture, Ecosystems and Environment, 189, 127-135.

BURBA G., ANDERSON D. (2005). A Brief practical Guide to Eddy Covariance Flux Measurements: Principles and workflow Examples for Scientific and industrial Application. LI-COR Biosciences.

CONAB: Companhia Nacional de Abastecimento (2016). Acompanhamento da Safra Brasileira de Grãos, vol 3. URL http: //www.conab.gov.br.

Dengel, S., Zona, D., Sachs, T., Aurela, M., Jammet, M., Parmentier, F. J. W., Oechel, W., Vesala, T. (2013). Testing the applicability of neural networks as a gap-filling method using CH4 flux data from high latitude wetlands. Biogeosciences, 10(12), 8185-8200.

Detto, M., Verfaillie, J., Anderson, F., Xu, L., Baldocchi, D. (2011). Comparing laser-based open- and closed-path gas analyzers to measure methane fluxes using the eddy covariance method. Agricultural and Forest Meteorology, 151(10), 1312-1324.

Diaz, M., Roberti, D. R. (2015). CÁLCULO DAS TROCAS DE CARBONO NUM AGROECOSSISTEMA DE ARROZ COM APLICAÇÃO DE TÉCNICAS DE PREENCHIMENTO DE FALHAS. Ciência e Natura, 37(0). Disponível em: http://cascavel. ufsm.br/revistas/ojs-2.2.2/index.php/cienciaenatura/article/view/16211.

Embrapa, E. B. D. P. A. (2006). Sistema brasileiro de classificação de solos.

Falge, E., Baldocchi, D., Olson, R. (2001). Gap filling strategies for long term energy flux data sets. Agricultural and Forest Meteorology, (107), 71-77. Disponível em: http://www.sciencedirect.com/science/article/pii/S0168192300002355.

Foken, T., Göockede, M., Mauder, M., Mahrt, L., Amiro, B., Munger, W. (2004). Post-Field Data Quality Control. Em: Handbook of Micrometeorology, pp. 181–208. Disponível em: http://dx.doi.org/10.1007/1-4020-2265-4_9%5Cnhttp: //link.springer.com/10.1007/1-4020-2265-4_9.

IPCC (2013). Working Group I Contribution to the IPCC Fifth Assessment Report, Climate Change 2013: The Physical Science Basis. Ipcc, AR5 (March 2013), 2014. Disponível em: http://ipccwg1.jp/AR4/meeting/pdf/SyR0407-siryo2. pdf{%}5Cnhttp://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle: IPCC,+2014:+Climate+Change+2014:+Impacts,+Adaptation,+and+Vulnerability.+Par +A: +Global+and+Sectoral+Aspects.+Contribution+of+Working+Gro, arXiv:1011.1669v3.

Moffat, A. M., Papale, D., Reichstein, M., Hollinger, D. Y., Richardson, A. D., Barr, A. G., Beckstein, C., Braswell, B. H., Churkina, G., Desai, A. R., Falge, E., Gove, J. H., Heimann, M., Hui, D., Jarvis, A. J., Kattge, J., Noormets, A., Stauch, V. J. (2007). Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agricultural and Forest Meteorology, 147(3-4), 209-232, URL http://linkinghub.elsevier.com/retrieve/pii/S016819230700216X.

Taiz, L., Zeiger, E. (2006). Fisiología Vegetal. Em: Fisiología Vegetal, pp. 536-537.

Published

2018-03-22

How to Cite

Fagundes, L. A., Maboni, C., Pinheiro, M. E., Sehnem, J., Diaz, M., & Roberti, D. R. (2018). Study of filling techniques for methane flow data in an area of flooded rice immediate. Ciência E Natura, 40, 193–198. https://doi.org/10.5902/2179460X30763

Most read articles by the same author(s)

1 2 3 4 5 6 > >>