This is an outdated version published on 2020-05-26. Read the most recent version.

The bioremediation potential of filamentous fungi in soil contaminated with lead

Authors

DOI:

https://doi.org/10.5902/2179460X41262

Keywords:

Fungus, Bioremediation, Toxic metals

Abstract

Population increase resulting from industrial activities has worsened soil contamination with toxic metals. Given the complex dynamics of these pollutants and the complexity of soil matrices, one of the biggest challenges faced by the environmental field lies on developing effective technologies to remediate contaminated soils. Thus, bioremediation may be a decontamination alternative based on using microorganisms. The aims of the current study are to isolate and characterize filamentous fungi with bioremediation potential to be used in soils contaminated with lead. A soil sample was incubated in Sabouraud Caf Agar medium in BOD at 28ºC. CFUs were counted after 72h of incubation; the three most prominently grown colonies were isolated in new plates containing the same medium. Fungi were transferred to liquid submerged fermentation medium with 20 ppm of lead after 24 h of incubation; they remained in shaker incubator at 30°C, 120 rpm, for 120h. Next, the MP-AES analysis was performed to evaluate the final lead concentration. Isolated fungi such as Aspergillus, Penicillium and Trichoderma removed, 56.82%, 66.77% and 75.29% lead ions, respectively, in comparison to the control. Results confirmed the bioremediation potential of these fungi and their possible use in areas contaminated with the herein investigated metal.

Downloads

Download data is not yet available.

Author Biographies

Josiane Ribela Mariconi, Universidade Federal do Triângulo Mineiro, Uberaba, MG

Undergraduate in Environmental Engineering

Hugo Peres Moreira, Universidade Federal do Triângulo Mineiro, Uberaba, MG

Undergraduate in Biological Sciences

Leonardo Euripedes de Andrade Silva, Universidade Federal do Triângulo Mineiro, Uberaba, MG

Micology Laboratory

Vanessa Souza Reis Melo, Universidade Federal do Triângulo Mineiro, Uberaba, MG

Student of Graduate Program in Environmental Science and Technology

Ana Paula Milla dos Santos Senhuk, Universidade Federal do Triângulo Mineiro, Uberaba, MG

Graduate Program in Environmental Science and Technology. Department of Environmental Engineering

Deusmaque Carneiro Ferreira, Universidade Federal do Triângulo Mineiro, Uberaba, MG

Graduate Program in Environmental Science and Technology. Department of Environmental Engineering

Ana Carolina Borella Marfil Anhê, Universidade Federal do Triângulo Mineiro, Uberaba, MG

Graduate Program in Environmental Science and Technology. Department of Environmental Engineering

References

ALEXANDER M. Introduction to Soil Microbiology. 2nd ed. New York: John Wiley. 1977.

ALVES JC et al. Absorção e distribuição de chumbo em plantas de vetiver, Jureminha e Algaroba. Revista Brasileira de Ciência do Solo. 2008;32(3):1329-1336.

ANDRADE MG, MELO VF, GABARDO J, SOUZA LCP, REISSMANN CB. Metais pesados em solos de área de mineração e metalurgia de chumbo. Revista Brasileira de Ciência do Solo. 2009;33(6):1789-1888.

ANDRADE SAL, SILVEIRA APD. Biomassa e atividade microbianas do solo sob influência de chumbo e da rizosfera da soja micorrizada. Pesquisa Agropecuária Brasileira. 2004;39(12):1191-1198.

BARBOSA JR F, TANUS-SANTOS JE, GERLACH RF, PARSONS PJ. A Critical Review of Biomarkers Used for Monitoring Human Exposure to Lead: Advantages, Limitations, and Future Needs. Environmental Health Perspectives. 2005;113(12):1669–1674.

BARROS AJM, PRASAD S, LEITE VD, SOUZA AG. Avaliação do processo de biossorção de níquel em colunas verticais carregadas com biossólidos. In: 23º Congresso Brasileiro de Engenharia Sanitária e Ambiental, ABES - Associação Brasileira de Engenharia Sanitária e Ambiental; 2005 set 1-7; Campo Grande, Brasil.

CARNEIRO DA, GARIGLIO LPA. Biorremediação como ferramenta para a descontaminação de ambientes terrestres e aquáticos. Revista Tecer. 2010;3(4):82-95.

CAVALCANTI MAQ, OLIVEIRA LG, FERNANDES MJ, LIMA DM. Fungos filamentosos isolados do solo em municípios na região Xingó, Brasil. Acta Botanica Brasilica. 2006;20(4):831-837.

CESAR R et al. Distribuição de mercúrio, cobre, chumbo, zinco e níquel em sedimentos de corrente da bacia do rio Piabanha, Estado do Rio de Janeiro. Geochimica Brasiliensis. 2011;25(1):35-45.

COLLA LM, HEMKEMEIER M, GIL ASL. Biossorção de cádmio e produção de biossurfacrantes por fungos filamentosos em fermentação submersa. Revista CIATEC. 2012;4(1):1-10.

COLLA LM, PRIMAZ AL, LIMA M, BERTOLIN TE, COSTA JAV. Isolamento e seleção de fungos para biorremediação a partir de solo contaminado com herbicidas triazínicos. Ciências e Agrotecnologia. 2008;32(2):809-813.

CONCEIÇÃO DM, ATTILI-ANGELIS D, BIDOIA ED. Fungos filamentosos isolados do rio Atibaia, SP e refinaria de petróleo biodegradadores de compostos fenólicos. Arquivos do Instituto Biológico. 2005;72(1):99-106.

DA SILVA N et al. Manual de métodos de análise microbiológica de alimentos e água. São Paulo: Livraria Varela Editora, 2010.

FREITAS NETO MA, FELIX JPL, ARTHAUD IDB, LEITÃO RC, SANTAELLA ST. Remoção de compostos nitrogenados de águas residuárias de refinarias de petróleo através de reatores biológicos com fungos. Revista Tecnologia. 2007;28(1):85-96.

FUNDAÇÃO ESTADUAL DO MEIO AMBIENTE (FEAM), Governo do Estado de Minas Gerais: Belo Horizonte: Inventário de áreas contaminadas Estado de Minas Gerais. Belo Horizonte (Brasil): 2018.

GIANNETTI BF, NEIS AM, BONILLA SH, ALMEIDA CMVB. Decisões e Sustentabilidade Ambiental. In: COSTA NETO PLO, editor. Qualidade e Competência nas Decisões. São Paulo: Edgarg Blücher LTDA; 2007. p. 315-336.

HOSEINZADEH S, SHAHABIVAND S, ALILOO AA. Toxic metals accumulation in Trichoderma asperellum and T. harzianum. Microbiology. 2017;86(6):728–736.

IRAM S, WAQAR K, SHUJA N, PERVEEN K, AKHTAR I, AHMAD I. Tolerance potential of different Species of Aspergillus as bioremediation tool - Comparative analysis. Journal of Biodiversity and Environmental Sciences. 2013;3(4)1-10.

KHAMESY SJ, HAMIDIAN AH, ATGHIA O. Identification of the fungi absorbing heavy metals isolated from waste deposits of zinc factories, Zanjan province, Iran. Original Article. 2016;3(1):65-73.

KOTSOU M et al. Integrated aerobic biological treatment and chemical oxidation with Fenton's reagent for the processing of green table olive wastewater. Process Biochemistry. 2004;39(11):1653-1660.

LANDMEYER JE, BRADLEY PM, CHAPELLE FH. Influence of Pb on microbial activity in Pb-contaminated soils. Soil Biology and Biochemistry. 1993;24:1465-1466.

LEMOS JLS, CARLOS MC, FARIAS YPTMM, SANTOS RLC, editors. Revisão acerca da utilização de microrganismos na biorremediação de rejeitos industriais contendo metais pesados. Rio de Janeiro: CETEM/MCT; 2008.

LIMA DF, OLIVEIRA OMC, CRUZ MJM. Utilização dos fungos na biorremediação de substratos contaminados por petróleo: estado da arte. Cadernos de Geociências. 2011;8(2): 112-121.

MARIGA JT. Resíduos sólidos e meio ambiente urbano. Revista Varia Scientia. 2005;5(10):177-187.

MARTINEZ CO, SILVA CMMS, FAY EF, ABAKERLI RB, MAIA AHN, DURRANT LR. Microbial degradation of sulfentrazone in a Brazilian Rhodic Hapludox soil. Brazilian Journal of Microbiology. 2010;41(1):209-217.

MARTINS LR, LYRA FH, MIRTHES MH, RUGANI MH, TAKAHASHI JA. Bioremediation of metallic ions by eight Penicillium species. Journal of Environmental Engineering. 2016;142(9).

MELO IS, AZEVEDO JL, editors. Microbiologia Ambiental. 2 st ed. Jaguariúna: Embrapa Meio Ambiente; 2008.

MESQUITA FILHO J. Aspectos gerais da caracterização macroscópica das colônias fúngicas. Botucatu: Departamento de Microbiologia e Imunologia. Curso de Biomedicina, 2012. 16 p.

MUKHERJEE PK, HORWITZ BA, HERRERA-ESTRELLA A, SCHMOLL M, KENERLEY CM. Trichoderma research in the genome era. Annual Review Phytopathology. 2013;51:105-129.

OLADIPO OG, AWOTOYE OO, OLAYINKA A, EZEOKOLI OT, MABOETA MS, BEZEIDENHOUT CC. Heavy metal tolerance potential of Aspergillus strains isolated from mining sites. Bioremediation. 2016;20(4):287-297.

OLIVEIRA AF et al. Mercury tolerance of Penicillium sp isolated from kefir grains. Ciência e Natura. 2018;40.

PAL A, GHOSH S, PAUL AK. Biosorption of cobalto by fungi from serpentine soil of Andaman. Bioresource Technology. 2006;97(10):1253-1258.

PARIA K, MANDAL SM, CHAKROBORTY SK. Simultaneous Removal of Cd(II) and Pb(II) Using a Fungal Isolate, Aspergillus penicillioides (F12) from Subarnarekha Estuary. International Journal of Environmental Research. 2018;12(1):77–86.

PIERANGELI MAP, GUILHERME LRG, CURI N, SILVA MLN, OLIVEIRA LR, LIMA JM. Efeito do pH na adsorção-dessorção de chumbo em Latossolos brasileiros. Revista Brasileira de Ciência do Solo: Sociedade Brasileira de Ciência do Solo Brasil. 2001;25(2):269-277.

PRICE MS, CLASSEN JJ, PAYNE GA. Aspergillus niger absorbs copper and zinc from swine wastewater. Bioresource Technology. 2001;77(1):41-49.

RAO JR, VIRARAGHAVAN T. Biosorption of phenol from an aqueous solution by Aspergillus niger biomass. Bioresource Technology. 2002;85(2):165-171.

SANTOS LC, ANTONIOLLI ZI, LEAL LT, LUPATINI M. População de bactérias e fungos no solo contaminado com cobre nas Minas do Camaquã, RS, Brasil. Ciência e Natura. 2007;29(2):105-114.

SANTOS VL, LINARDI VR. Biodegradation of phenol by a filamentous fungi isolated from industrial effluents - identification and degradation potencial. Process Biochemistry. 2004;39:1001-1006.

SILVA JÚNIOR FMR, PEREIRA SV. Ecologia e fisiologia de fungos filamentosos isolados de solo contaminado por metais pesados. Revista Brasileira de Biociências. 2007;5(2):903-905.

SIM CSF, TING ASY. FTIR and kinetic modelling of fungal biosorbent Trichoderma asperellum for the removal of Pb(II), Cu(II), Zn(II) and Cd(II) from multi-metal solutions. Desalination and Water Treatment. 2017;63:167-171.

STAMFORD NP, STAMFORD TLM, ANDRADE DEGT, MICHEREFF SJ. Microbiota dos solos tropicais. In: MICHEREFF SJ, ANDRADE DEGT, MENEZES M. editors. Ecologia e Manejo de Patógenos Radiculares em Solos Tropicais. Recife: UFRPE, Imprensa Universitária; 2005. p. 61-91.

TANSENGCO M, TEJANO J, CORONADO F, GACHO C, BARCELO J. Heavy metal tolerance and removal capacity of Trichoderma species isolated from mine tailings in Itogon, Benguet. Environment and Natural Resources Journal. 2018;16(1):39-57.

TASTAN BE, ERTUĞRUL S, DÖNMEZ G. Effective Bioremoval of Reactive Dye and Heavy Metals by Aspergillus versicolor. Bioresource Technology. 2009;101(3):870-876.

TIAN D et al. A new insight into lead (II) tolerance of environmental fungi based on a study of Aspergillus niger and Penicillium oxalicum. Environmental Microbiology. 2019;21(1):471–479.

WAHAB AA, AWANG ASAH, AZHAM Z, TAY MG, ADEYEMI FM. Biosorption of lead (II) ion using Penicillium citrinum KR706304 isolated from the mangrove soil environment of southeast Borneo. Ife Journal of Science. 2017;19(2):341-351.

WETLER-TONINI RMC, REZENDE CE, GRATIVOL AD. Degradação e biorremediação de compostos do petróleo por bactérias: revisão. Oecologia Australis. 2010;4(14):1010-1020.

XIE Y, CHIBA M, SHINOHARA A, WATANABE H, INABA Y. Studies on lead–binding protein and interaction between lead and selenium in the human erythrocytes. Industrial Health. 1998;36:234-239.

Downloads

Published

2020-05-26

Versions

How to Cite

Mariconi, J. R., Moreira, H. P., Silva, L. E. de A., Melo, V. S. R., Senhuk, A. P. M. dos S., Ferreira, D. C., & Anhê, A. C. B. M. (2020). The bioremediation potential of filamentous fungi in soil contaminated with lead. Ciência E Natura, 42, e37. https://doi.org/10.5902/2179460X41262

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.