Extraction of furfural inhibitor from biomass hydrolysate of rice husk

Authors

DOI:

https://doi.org/10.5902/2179460X68832

Keywords:

Furfural, Residual biomass, Liquid-liquid extraction

Abstract

The production of second generation ethanol (E2G) has proven to be an alternative to non-renewable fuels, through transforming lignocellulosic waste into renewable fuel. In turn, rice husk has great potential due to its availability and composition. The conversion of lignocellulosic biomass to biofuel comprises a fundamental pre-treatment step, however, at this stage, the formation of degradation products (inhibitory compounds) occurs, among them, furfural, which cause negative effects on the viability of fermentative cells, making the production of E2G unfeasible. Given the above, the objective of this work was to remove the furfural inhibitor present in the lignocellulosic broth after the pre-treatment process, using oleic acid, through liquid-liquid extraction. The quantification of total reducing sugars in the hydrolyzate did not show significant variation between the pre and post extraction stages. Regarding the furfural inhibitor, in tests performed with a solution made in the laboratory, removal of up to 62.30% was obtained when the initial concentration was 5.00 g.L-1. With respect to the tests with the hydrolyzate from the rice husk pre-treatment, the maximum removal observed was 10.40%, but the initial concentration of furfural was 1.64 g.L-1. The results obtained indicate the possibility of using oleic acid as an extracting agent of the furfural inhibitor from lignocellulosic hydrolysates.

Downloads

Download data is not yet available.

Author Biographies

Victor de Freitas Piva, Universidade Federal do Triângulo Mineiro, Uberaba, MG

Chemical Engineering Department.

Vanessa Souza Reis Melo, Universidade Federal do Triângulo Mineiro, Uberaba, MG

Environmental Engineering Department

Bruna Vieira Cabral, Universidade Federal do Triângulo Mineiro, Uberaba, MG

Environmental Engineering Department.

Diego Andrade Lemos, Universidade Federal do Triângulo Mineiro, Uberaba, MG

Environmental Engineering Department.

References

Almeida, J.R.M.; Modig, T.; Petersson, A. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. Journal of Chemical Technology and Biotechnology, 82, 340–9, 2017.

Barros, M.R.A.; Cabral, J.M.S.; Novais, J.M.; Production of ethanol by immobilized Saccharomyces bayanus in an extractive fermentation system, Biotechnol. Bioeng. 29 1097–1104, 1987.

Bernfeld, P. Amylases, α and β. Methods in Enzymology, v. 1, p. 149-157, 1955.

BRASIL. Ministério de Minas e Energia; Empresa de pesquisa energética. Balanço energético nacional, 2021.

Canilha, L.; Chandel, A. K.; Suzane Dos Santos Milessi, T.; Antunes, F. A. F.; Luiz Da Costa Freitas, W.; Das Graças Almeida Felipe, M.; Da Silva, S. S. Bioconversion of sugarcane biomass into ethanol: An overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. Journal of Biomedicine and Biotechnology, p. 15, 2012.

Carvalheiro, F.; Duarte, L. C.; Gírio, F. M. Hemicellulose biorefineries: a review on biomass pretreatments. Journal of Scientific & Industrial Research. 67, 849–864, 2008.

Gírio, F.; Fonseca, C.; Carvalheiro, F.; Duarte, L.; Marques, S.; Bogel-Lukasik, R. Bioresource Technology Hemicelluloses for fuel ethanol: A review. Bioresource Technology, 101, 4775–4800, 2010.

Jassal, D.S.; Zhang, Z.; Hill, G.A. In situ extraction and purification of ethanol using commercial oleic acid, Can. J. Chem. Eng. 72, 822-827, 1994.

Jayakody, L.N.; Hayashi, N.; Kitagaki, H. Identification of glycolaldehyde as the key inhibitor of bioethanol fermentation by yeast and genome-wide analysis of its toxicity. Biotechnology Letters, 33, 285–92, 2011.

Khabarov, Y.G., Kamakina, N.D., Gusakov, L.V., Veshnyakov, V.A. A new spectrophotometric method for determination of furfural and pentoses. Russ J Appl Chem, 79, 103–106, 2006.

Khamis, Nor & Shamsudin, Saleha & Rahman, Nur & Kasim, Khairul. Effects of autohydrolysis on rice biomass for reducing sugars production. Materials Today: Proceedings. 16. 2078-2087, 2019.

Lemos, D. A. et al. Selection and application of nontoxic solvents in extractive ethanol fermentation. Biochemical Engineering Journal, 127, 128-135, 2017.

Lemos, D. A. Estudo do processo de fermentação alcoólica extrativa por solventes orgânicos. Tese (Doutorado) – Departamento de Engenharia Química, UFSCar, São Carlos/SP, 2017.

Lemos, D.A.; Sonego, J.L.S.; Cruz, A.J.G.; Badino, A.C. In situ extractive ethanol fermentation in a drop column bioreactor: Extractive ethanol fermentation performed in a drop column bioreactor. Journal of Chemical Technology & Biotechnology. 93. 10.1002/jctb.5504, 2018.

Lemos, D.A.; Sonego, J.L.S.; Cruz, A.J.G.; Badino, A.C. Improvement of ethanol production by extractive fed-batch fermentation in a drop column bioreactor. Bioprocess Biosyst Eng. 2020.

Liu, Z.L. Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Applied Microbiology and Biotechnology, 90, 809–25, 2011.

Malinowski, J.J. Two-phase partitioning bioreactors in fermentation technology. Biotechnology Advances, 19, 525–538, 2001.

Martin, C.; Marcet, M.; Almazán, O.; Jönssen, L.J. Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Bioresource Technology 98, 1767-1773, 2007.

Mota, Claudio J. A.; Monteiro, Robson S.. Química e sustentabilidade: novas fronteiras em biocombustíveis. Quím. Nova, São Paulo, v. 36, n. 10, p. 1483-1490, 2013.

Nakanishi, S.C.; Soares, L.B.; Biazi, L.E.; Nascimento, V.M.; Costa, A.C.; Rocha, G.J.M.; Ienczak, J.L. Fermentation strategy for second generation ethanol production from sugarcane bagasse hydrolyzate by Spathaspora passalidarum and scheffersomyces stipitis. Biotechnol Bioeng, v. 114, n. 10, p. 2211-2221, 2017.

Nakasu, P.Y.S.; Ienczak, L.J.; Costa, A.C.; Rabelo, S.C. Acid post-hydrolysis of xylooligosaccharides from hydrothermal pretreatment for pentose ethanol production. Fuel, v. 185, p. 73-84, 2016.

Offeman, R.D.; Franqui-Espiet, D.; Cline, J.L.; Robertson, G.H.; Orts, W.J. Extraction of ethanol with higher carboxylic acid solvents and their toxicity to yeast. Separation and Purification Technology, 72, 2, 180-185, 2010.

Palmqvist, E.; Hahn-Hägerdal, B.. Fermentation of lignocellulosic hydrolysates II: Inhibitors and mechanisms of inhibition, Bioresource Technology, v. 74, p. 25– 33, 2000.

PERES, J., JUNIOR, E., GAZZONI, D.. Biocombustíveis uma oportunidade para o agronegócio brasileiro. Revista de Política Agrícola, 2005.

Portal Ageitec da EMBRAPA.; 2017. Brasília: Empresa Brasileira de Pesquisa Agropecuária. Disponível em: https://www.agencia.cnptia.embrapa.br/gestor/arroz/arvore/CONT000fe7457q102wx5eo07qw4xezy8czjj.html#. Acesso em: 27 jun. 2021.

Qian, X. H. et al. A initio molecular dynamics simulations of beta-d-glucose and beta-dxylose degradation mechanisms in acidic aqueous solution, Carbohydr. Res. v. 340, p. 2319– 2327, 2005.

Rabelo, S. C. Avaliação e otimização de pré-tratamentos e hidrólise enzimática do bagaço de cana-de-açúcar para a produção de etanol de segunda geração. Tese (Doutorado) – Faculdade de Engenharia Química, UNICAMP, Campinas/SP, 2010.

Reyes, J.; Peralta-Zamora, P.; Durán, N. Hidrólise enzimática de casca de arroz utilizando-se celulases. Efeito de tratamentos químicos e fotoquímicos. Química Nova, 21, 2, 140-143, 1998.

Roque, Laerti & Morgado, Grazielle & Nascimento, Viviane & Ienczak, Jaciane & Rabelo, Sarita. Liquid-liquid extraction: A promising alternative for inhibitors removing of pentoses fermentation. Fuel. 242. 775-787. 10.1016/j.fuel.2018.12.130, 2019.

Santos, Martha Suzana Rodrigues dos. Estudo de pré-tratamentos de palha e sabugo de milho visando a produção de etanol 2G. 2014. 74 f. Dissertação (Mestrado em Engenharia Química) – Centro de Tecnologia, Programa de Pós Graduação em Engenharia Química, Universidade Federal de Alagoas, Maceió, 2014.

Santos, S.C.; Sousa, A.S.; Dionísio, S.R.; Tramontina, R.; Ruller, R.; Squina, F.M.; Vaz Rossell, C.E.; Costa, A.C.; Ienczak, J.L. Bioethanol production by recycled scheffersomyces stipitis in sequential batch fermentations with high cell density using xylose and glucose mixture. Bioresource technology, v. 219, p. 319-329, 2016.

Vargas Betancur, Gabriel J; Pereira JR, Nei. Sugar cane bagasse as feedstock for second generation ethanol production: Part I: Diluted acid pretreatment optimization. Electron. J. Biotechnol., Valparaíso , v. 13, n. 3, p. 10-11, mayo 2010.

Zautsen, R. R. M. Fermentação alcoólica e extração líquido-líquido simultânea de etanol e de inibidores provenientes de caldo hidrolítico de biomassa lignocelulósica.194 p, 2011.

Downloads

Published

2022-04-04 — Updated on 2022-04-18

Versions

How to Cite

Piva, V. de F., Melo, V. S. R., Cabral, B. V., & Lemos, D. A. (2022). Extraction of furfural inhibitor from biomass hydrolysate of rice husk. Ciência E Natura, 44, e15. https://doi.org/10.5902/2179460X68832 (Original work published April 4, 2022)

Issue

Section

Special Edition

Most read articles by the same author(s)