Turbulent velocity and temperature probability density functions in the Amazonian surface boudary layer

Authors

  • Leonardo Deane de Abreu Sá DCM - LAC / INPE São José dos Campos, São Paulo, SP.
  • Maurício José Alves Bolzam DCM - LAC / INPE São José dos Campos, São Paulo, SP.
  • Fernando Manuel Ramos DCM - LAC / INPE São José dos Campos, São Paulo, SP.
  • Camilo Rodrigues Neto DCM - LAC / INPE São José dos Campos, São Paulo, SP.
  • Reinaldo Roberto Rosa DCM - LAC / INPE São José dos Campos, São Paulo, SP.

DOI:

https://doi.org/10.5902/2179460X36916

Abstract

We present a statistical model for the distribution of increments of wind velocity and temperature of turbulence data measured in the atmospheric surface layer above the Amazonian forest, on a micrometeorological tower in Rebio-Jaru Reserve (10°04' S; 61°56' W) during LBA (Large Scale Biosphere Atmosphere Experiment in Amazonia) wet season campaign. The data were measured using 3D Campbell sonic anemometer and a Campbell fast response thermometer located at a height of 66 m (the forest canopy has a mean height of 35 m; but some of the higher tree branches may reach the height of 45 m), at a sampling rate of 60 Hz. The goal of this investigation is to detect noextensivity properties of the turbulent field in such a peculiar environment. To do this we calculate the probability density function (PDF) for wind velocity increments Vr(x) = V(x) - V(x+r) (and temperature increments) at different length scales r. The preliminary results show some evidence that the nonextensive thermostatistics modelling proposed by Tsallis (1988) provides a new and simple framework for explaining the statistical behavior of fully developed mechanical turbulence. We also investigate the relationship between intermittency and nonextensivity using a single parameter q, from Tsallis thermostatistics. The results of the wind velocity turbulent signals measured at the level of 66m show a very good agreement with the Tsallis model but the temperature signals show some discrepancy with respect to the proposed model. Physical discussions are proposed to explain our results.

Downloads

References

Antonia, R. A.; Hopfinger, E. J.; Gagne, Y.; Anselmet, F., Temperature structure functions in turbulent shear flows, Physical Review A, v. 30, n. 5, p. 2704-2707, Nov. 1984. DOI: https://doi.org/10.1103/PhysRevA.30.2704

Baerentsen, J. H. and Berkowicz, R. Monte Carlo Simulation of Plume Dispersion in the Convective Boundary Layer, Atmospheric Environment, v. 18, n. 4, p. 701-712, 1984. DOI: https://doi.org/10.1016/0004-6981(84)90256-7

Balanchandar, S. and Sirovich, L. Probability distribution function in turbulent convection. Physics of Fluids A, v. 3, n. 5, p. 919-927, May 1991. DOI: https://doi.org/10.1063/1.857968

Castaing, B.; Gagne, Y.; Hopfinger, E. J. Velocity probability density functions of high Reynolds number turbulence. Physica D, v. 46, p. 177-200, 1990. DOI: https://doi.org/10.1016/0167-2789(90)90035-N

Chu, C. R.; Parlange, M. B.; Katul, G. G.; Albertson, J. D. Probability density functions of turbulent velocity and temperature in the atmospheric surface layer, Water Resources Research, v. 32, n. 6, p. 1681-1688, Jun. 1996. DOI: https://doi.org/10.1029/96WR00287

Culf, A. D.; Esteves, J. L.; Marques Filho, A. O. and Rocha, H. R. Radiation, temperature and humidity over forest and pasture in Amazonia, In: Amazonian Deforestation and Climate, C. A. Nobre, J.H.C. Gash, J.M. Roberts and R.L. Victoria Eds., Wiley: 175-191, Chichester, 1996.

Fitzjarrald, D. R. and Moore, K. E. Mechanisms of Nocturnal Exchange Between the Rain Forest and the Atmosphere, Journal of Geophysical Research, v. 95, n. D10, p. 16839-16850, Sep. 1990. DOI: https://doi.org/10.1029/JD095iD10p16839

Fitzjarrald, D. R.; Moore, K. E.; Cabral, O. M. R.; Scolar, J.; Manzi, A. O.; Sá, L. D. A. Daytime Turbulent Exchange Between the Amazon Forest and the Atmosphere, Journal of Geophysical Research, v. 95, n. D10, p. 16825-16838, Sep. 1990. DOI: https://doi.org/10.1029/JD095iD10p16825

Frisch, U. From global scaling, à la Kolmogorov, to local multifractal scaling in fully developed turbulence, In: Turbulence and Stochastic Processes: Kolmogorov's Ideas 50 Years On, J.C.R. Hunt, O. M. Phillips and D Williams Eds., Proceedings of the Royal Society of London A: 434, 89-99, London, 1991. DOI: https://doi.org/10.1098/rspa.1991.0082

Frisch, U. Turbulence, Cambridge University Press, 296 pp., Cambridge, 1995.

Gannabathula, S. S. D. P.; Castro JR., W. E.; Sá, L. D. A.; Vittal Murty, K. P. R.; Wavelet Analysis of Coherent Structures Above and Within the Amazon Rain Forest, Preprints of the 15th Conference on Hydrology, TRMM Hydrology, 80th Annual Meeting of the American Meteorological Society: 375-378, American Meteorological Society, Long Beach, CA, 9-14 January 2000.

Gledzer, E. On the Taylor hypothesis corrections for measured energy spectra of turbulence, Physica D, v. 104, p. 163-183, 1997. DOI: https://doi.org/10.1016/S0167-2789(96)00300-4

Högström, U. and Bergström, H. Organized Turbulence in the Near-Neutral Atmospheric Surface Layer, Journal of the Atmospheric Sciences, v. 53, n. 17, p. 2452-2464, Sep. 1996. DOI: https://doi.org/10.1175/1520-0469(1996)053<2452:OTSITN>2.0.CO;2

Jaberi, F. A.; Miller, R. S.; Madnia, C. K.; Givi, P. Non-Gaussian scalar statistics in homogeneous turbulence, Journal of Fluid Mechanics, v. 313, p. 241-282, Apr. 1996. DOI: https://doi.org/10.1017/S0022112096002200

Kaimal, J. C.; Wyngaard, J. C.; Izumi, Y.; Coté, O. R. Spectral Characteristics of surface layer turbulence, Quarterly Journal of the Royal Meteorological Society, v. 98, n. 417, p. 563-589, July 1972. DOI: https://doi.org/10.1002/qj.49709841707

Katul, G. G.; Parlange, M. B.; Chu, C. R. Intermittency, local isotropy, and non-Gaussian statistics in atmospheric surface layer turbulence, Physics of Fluids, v. 6, n. 7, p. 2480-2492, July 1994. DOI: https://doi.org/10.1063/1.868196

Kevlahan, N. K.-R. and Vassilicos, J. C. The space and scale dependencies of the self-similar structure of turbulence, Proceedings of the Royal Society of London A, v. 447, p. 341-363, 1994. DOI: https://doi.org/10.1098/rspa.1994.0144

Kolmogorov, A. N. A refinament of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number, Journal of Fluid Mechanics, v. 13, p. 82-85, 1962. DOI: https://doi.org/10.1017/S0022112062000518

Kraichnan, R. H. On Kolmogorov's inertial-range theories, Journal of Fluid Mechanics, v. 62 (part. 2), p. 305-330, 1974. DOI: https://doi.org/10.1017/S002211207400070X

Kraichnan, R. H. Turbulent cascade and intermittency growth, In: Turbulence and Stochastic Processes: Kolmogorov's Ideas 50 Years On, J.C.R. Hunt, O. M. Phillips and D. Williams Eds., Proceedings of the Royal Society of London A: 434: 65-78, London 1991. DOI: https://doi.org/10.1098/rspa.1991.0080

Lumley, J. L. Some Comments on Turbulence, Physics of Fluids, v. A4, n. 2, p. 203-211, Feb. 1992. DOI: https://doi.org/10.1063/1.858347

Monin, A. S. and YAglom, A. M. Statistical Fluid Mechanics: Mechanics of Turbulence, MIT-Press, Cambridge, MA, 1971, 769 p.

Nelkin, M. In What Sense Is Turbulence an Unsolved Problem?", Science, v. 255, n. 5044, p. 566-570, 1992. DOI: https://doi.org/10.1126/science.255.5044.566

Sá, L. D. A. et al. General aspects of the Rebio-Jaru amazon forest micrometeorological tower LBA wet season campaign with some of its preliminary results. Preprints of the 15th Conference on Hydrology, TRMM Hydrology: 369-372, 80th Annual Meeting of the American Meteorological Society, Long Beach, CA, 9-14, January 2000.

Tennekes, H. and Lumley, J. L. A First Course in Turbulence, MIT-Press, Cambridge, MA, 1972, 300 p. DOI: https://doi.org/10.7551/mitpress/3014.001.0001

Sinai, Ya. G. and Yakhot, V. Limiting probability distribution of a passive scalar in a random velocity field. Physical Review Letters, v. 63, n. 18, p. 1962-1964, Oct. 1989. DOI: https://doi.org/10.1103/PhysRevLett.63.1962

Sreenivasan, K. R. and Antonia, R. A. The Phenomenology of Small-Scale Turbulence, Annual Review of Fluid Mechanics, v. 29, p. 435-472, 1997. DOI: https://doi.org/10.1146/annurev.fluid.29.1.435

Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics, v. 52, n. 1-2, 1988. DOI: https://doi.org/10.1007/BF01016429

Tsallis, C., Levy, S. V. F., Souza, A. M. C.; Maynard, R. Statistical-mechanical foundation of the ubiquity of Levy distributions in nature. Physical Review Letters., v. 75, p. 3589-3593, 1995. DOI: https://doi.org/10.1103/PhysRevLett.75.3589

Van Atta, C. Local isotropy of the smallest scales of turbulent scalar and velocity fields, In: Turbulence and Stochastic Processes: Kolmogorov's Ideas 50 Years On, J.C.R. Hunt, O. M. Phillips and D. Williams Eds., Proceedings of the Royal Society of London A: 434, 139-147, London, 1991. DOI: https://doi.org/10.1098/rspa.1991.0085

Vassilicos, J.C. Turbulence and intermittency. Nature, v. 374, n. 6521, p. 408-409, 1995. DOI: https://doi.org/10.1038/374408a0

Yakhot, V.; She, Z.-S.; Orszag, S. A . Deviations from the classical Kolmogorov theory of the inertial range of homogeneous turbulence. Physics of Fluids, v. A1, n. 2, p. 289-293, Feb. 1989. DOI: https://doi.org/10.1063/1.857445

Zhu, Y.; Antonia, R. A.; Hosokawa, I. Refined similarity hypotheses for turbulent velocity and temperature fields. Physics of Fluids, v. 7, n. 7, p. 1637-1648, July 1995. DOI: https://doi.org/10.1063/1.868482

Downloads

Published

2000-01-14

How to Cite

Sá, L. D. de A., Bolzam, M. J. A., Ramos, F. M., Rodrigues Neto, C., & Rosa, R. R. (2000). Turbulent velocity and temperature probability density functions in the Amazonian surface boudary layer. Ciência E Natura, 195–215. https://doi.org/10.5902/2179460X36916

Most read articles by the same author(s)