Proportional reasoning: analysis of a collection of mathematics textbooks for the final years of Elementary School
DOI:
https://doi.org/10.5902/1984644484013Keywords:
Proportional reasoning, Textbook, UnderstandingAbstract
The National Common Curricular Base (BNCC) (Brasil, 2018) is a guiding document that defines a set of essential learning that students must develop during Basic Education, assuring the same opportunity to all Brazilian students. For the final years of Elementary School, the BNCC (Brasil, 2018) establishes the importance of students knowing how to deal with the set of rational numbers, a subject that permeates other mathematical knowledge and other disciplines. The textbook is one of the resources that the teacher has at his/her disposal to use in the teaching-learning process. This article presents a study that explored the analysis of a collection of Mathematics textbooks for the final years of Elementary School, in order to assess their potential to help in the process of teaching and learning proportional reasoning. A qualitative document analysis method developed by Australian researchers was used (Shield; Dole, 2013). This methodology allowed us to achieve the objective of investigating the possibilities that textbooks offer to promote the teaching of proportional reasoning. Therefore, we present the research question: Which of the five learning objectives of the Australian researchers Shield and Dole (2013) did we find in a collection of Mathematics textbooks adopted by public schools and approved in the PNLD 2020 (Brasil, 2019) intended for the years end of elementary school? The results indicate that to promote understanding of proportional situations, textbooks need to highlight proportional reasoning. Although, it can serve as support for teachers, in this case the analysis shows that the textbook may not support students' understanding.
References
BEHR, Merlyn; LESH, Richard; POST, Thomas; SILVER Edward. Rational number concepts. In: R. Lesh & M. Landau (Eds.), Acquisition of mathematics concepts and processes. New York: Academic Press, 1983, p. 91-125.
BEN-CHAIM, David; ILANY, Bat-Sheva; KERET, Yaffa. Atividades investigativas autênticas para o ensino de razão e proporção na formação de professores de matemática para os níveis elementar e médio. Boletim de Educação Matemática (BOLEMA), vol. 21, núm. 31, 2008, pp. 129-159. Universidade Estadual Paulista Júlio de Mesquita Filho.Rio Claro, Brasil.
BRASIL. Ministério da Educação. Base nacional comum curricular: educação é a base. Brasília: MEC, 2018.
BRASIL. Ministério da Educação. PNLD 2020: apresentação – guia de livros didáticos/ Ministério da Educação – Secretaria de Educação Básica – Fundo Nacional de Desenvolvimento da Educação. Brasília, DF: Ministério da Educação, Secretaria de Educação Básica, 2019.
LAUDARES, Michelle Adriane de Oliveira. Uma pesquisa documental sobre o raciocínio porporcional em livros didáticos nacionais de matemática do PNLD 2020. 2023, 267 f. Doutorado em educação matemática: Universidade Federal do Espírito Santo, Vitória/ES.
POWELL, Arthur Belford. Melhorando a epistemologia de números fracionários: uma ontologia baseada na história e neurociência. Revista de Matemática, Ensino e Cultura. Grupo de Estudos e Pesquisas sobre Cultura Matemática e suas Epistemologias na Educação Matemática. Ano 13, n. 29, set. - dez. 2018, p. 78-92.
SHIELD, Malcon; DOLE, Shelley. Investigating textbook presentations of ratio and proportion. In B. Barton, K. Irwin, M. Pfannkuck, & O. J. Thomas (Eds.), Mathematics Education in the south Pacific. Proceedings of the 25th Annual Conference of the Mathematics Education Research Group of Australasia (MERGA) 2002, p. 608-616. Auckland, New Zealand: MERGA.
SHIELD, Malcon; DOLE, Shelley. Assessing the potential of mathematics textbooks to promote deep learning. Educational Studies in Mathematics, 82, 2013, p. 183–199.
SKEMP, Richard. Mathematics in the primary school. London: Routledge, 1989.
SOUZA, Joamir.Matemática, realidade & tecnologia.São Paulo: FTD, 2018. v. 6.
SOUZA, Joamir.Matemática, realidade & tecnologia.São Paulo: FTD, 2018. v. 7.
SOUZA, Joamir.Matemática, realidade & tecnologia.São Paulo: FTD, 2018. v. 8.
SOUZA, Joamir.Matemática, realidade & tecnologia.São Paulo: FTD, 2018. v. 9.
VERGNAUD, Gérard. Multiplicative structures. In: LESH, Richard.; LANDAU, Morgan. Acquisitions of mathematics concepts and processes. New York, Academic Press, p. 127-174, 1983.
WIELEWSKI, Sergio Antonio. Pensamento instrumental e pensamento relacional na educação matemática. 2008, 471 f. Doutorado em educação matemática: Pontifícia Universidade Católica de São Paulo, São Paulo.
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Education

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Declaration of originality
We declare that all articles present in the journal Educação (UFSM) are originals and were not submitted for publishing on any other publication, as a whole or a fraction. We also declare that, after being published by Educação (UFSM), a paper will not be submitted to another journal within two years. After this time, our journal transfers the publishing rights to the authors, with a permit granted by the Editorial Council.
We also acknowledge that the originals’ submission to Educação (UFSM) implies on a transference of copyright for physical and digital publishing to the journal. In case of noncompliance, the violator will receive sanctions and penalties predicted by the Brazilian Copyright Protection Law (n. 9610, dated 19/02/98).
Attribution 4.0 International (CC BY 4.0)
This license lets others remix, transform, and build upon the material for any purpose, even commercially, and copy and redistribute the material in any medium or format.

This work is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0)

