Analysis and interpretation of massive quality parameters for geomechanical model proposition

Authors

  • Luciana Arnt Abichequer Universidade Federal do Pampa, Caçapava do Sul, RS
  • Luis Eduardo de Souza Universidade Federal do Pampa, Caçapava do Sul, RS
  • Raul Oliveira Neto Universidade Federal do Pampa, Caçapava do Sul, RS, Brasil
  • Juliana Fernandes Fabrício Universidade Federal do Pampa, Caçapava do Sul, RS

DOI:

https://doi.org/10.5902/2236130818712

Keywords:

Geomechanical model, Classification systems, Geomechanical characterization

Abstract

Before lauching any mining enterprise, whether open pit or underground, must have knowledge of rock mass geomechanical characteristics, which the work will be developed. The geomechanical classification systems are used to obtain information about these characteristics. These systems gather the necessary information and propose an index for rock mass qualifying. This article presents the methodology used on a rock mass qualifying for a lead and zinc deposit, through the classification system Rock Mass Rating (RMR), to propose a geomechanical model. Through the analysis of 50 drill holes with its geological logs it was possible to create the deposit geological model, recognizing the units present in the study area. Were identified 4 units: sandstone, conglomerate, rhythmite and ore. In addition, information was collected regarding the 6 parameters, which RMR is based, on drill holes. After RMR values being determined over all drill holes, they were estimated within each unit by the indicator kriging. From the estimation results was possible to obtain the geomechanical model. In the proposed geomechanical model was observed the predominance of class II (good rock) in all units. In the model base predominated class III and IV (fair rock and poor rock respectively) due to the presence of breccia.

Downloads

Download data is not yet available.

Author Biographies

Luciana Arnt Abichequer, Universidade Federal do Pampa, Caçapava do Sul, RS

Engenheiro(a) de Minas/Professor do Programa de Pós-Graduação em Tecnologia Mineral (PPGTM), Universidade Federal do Pampa, Caçapava do Sul, RS, Brasil

Luis Eduardo de Souza, Universidade Federal do Pampa, Caçapava do Sul, RS

Engenheiro de Minas/Professor do Programa de Pós-Graduação em Tecnologia Mineral (PPGTM), Universidade Federal do Pampa, Caçapava do Sul, RS, Brasil

Raul Oliveira Neto, Universidade Federal do Pampa, Caçapava do Sul, RS, Brasil

Engenheiro de Minas/Professor do Programa de Pós-Graduação em Tecnologia Mineral (PPGTM), Universidade Federal do Pampa, Caçapava do Sul, RS, Brasil

Juliana Fernandes Fabrício, Universidade Federal do Pampa, Caçapava do Sul, RS

Tecnólogo em Mineração, Universidade Federal do Pampa, Caçapava do Sul,RS, Brasil

References

BARTON, N.R., LIEN, R., LUNDE, J. Engineering classification of rock masses for the design of tunnel support. Rock Mech, 6 (4), pp.189-239 (1974)

BIENIAWSKI, Z. T. Engineering Classification of Jointed Rock Masses, Trans. S. Afr. Inst. Civ. Eng., 15, pp. 335-344 (1973)

BIENIAWSKI, Z. T. Rock Mechanics Design in Mining and Tunnelling, Rotterdam/Boston: A. A. Balkema Publisher, 1984. 272 p

BIENIAWSKI, Z. T. Engineering Rock Mass Classification, New York: John Wiley & Sons, 1989. 251 p.

CASTRO, W. J. Síntese de Estudos de Estabilidade de Taludes de Minas de Minério de Ferro do Quadrilátero Ferrífero-MG, Dissertação de Mestrado, Departamento de Engenharia Civil da Escola de Minas UFOP, Ouro Preto, 2004. 202 p

CHOI, J. Y., LEE, C. I. An estimation of rock mass rating using 3D-indicator kriging approach with uncertainty assessment of rock mass classification. Proceeding of the 11th congress of the International Society for Rock Mechanics. Lisbon, 2, pp. 285-288 (2007)

CHOI, Y., YOON, S.Y., PARK, H.D. Tunnelling Analyst: A 3D GIS extension for rock mass classification and fault zone analysis in tunnelling. Computers & Geosciences, 35, pp. 1322-1333 (2009)

DEERE, D.U. Technical Description of Rock Cores for Engineering Purposes. Rock Mechanics and Engineering Geology, 1, pp. 17-22 (1964)

DEERE, D.U., DEERE, D.W. The Rock Quality Designation (RQD) Index in Practice. Rock Classification Systems for Engineering Purposes, pp. 91-101 (1988)

EGAÑA, M., ORTIZ, J.M. Assessment of RMR and its uncertainty by using geostatistical simulation in a mining project. Journal of GeoEngineering, 8 (3), pp. 83-90 (2013)

EXADAKTYLOS, G., STRAVOPOULOU, M., XIROUDAKIS, G., DE BROISSIA, M., SCHWARZ, H. A spatial estimation model for continuous rock mass characterization from the specific energy of a TBM. Rock Mechanics and Rock Engineering, 41, pp. 797-834 (2008)

HOEK, E., READ, J., KARZULOVIC, A., CHEN, Z. Y. Rock Slopes in Civil and Mining Engineering. International Conference on Geotechnical and Geological Engineering. pp. 1-16 (2000)

HUIJBREGTS, C. J. Regionalized variables and quantitative analysis of spatial data. Display and analysis of spatial data. New York: John Wiley & Sons, pp. 38-53 (1975)

IMAI, N. N., VICENTE, J., LIMA. D. L., TACHIBANA, V. M., SILVA, E. A., VOLL, E., OLIVEIRA, H. E. S. Análise Comparativa da Interpolação por Krigagem Ordinária e Krigagem por Indicação no Caso de Ervas Daninhas em Cultura de Soja. XXI Congresso Brasileiro de Cartografia. Publicação em CD-Rom sem paginação (2003)

ISAAKS, E.H., SRIVASTAVA, R.M. An Introduction to Applied Geostatistics, New York: Oxford University press, 1989. 561 p.

JOURNEL, A.G. Nonparametric estimation of spatial distributions. Journal of the International Association for Mathematical Geology, 15 (3), pp. 445-468 (1983)

KAEWKONGKAEW, K., PHIEN, N., HARNPATTANAPANICH, T., SUTIWANICH, C. Geological Model of Mae Tang-Mae Ngad Diversion Tunnel Project, Northern Thailand. Open Journal of Geology, 3 (5), pp. 340-351 (2013)

LANDIM, P. M. B., STURARO, J. R. Krigagem Indicativa aplicada à elaboração de mapas probabilísticos de risos. IGCE/UNESPE, 2002. 20 p.

OH, S., CHUNG, H., LEE, D. K. Geostatistical integration of MT and borehole data for RMR evaluation. Enviromental Geology, 46, pp. 1070-1078 (2004)

OLIVEIRA, S. B. Estudos Geoestatísticos Aplicados a um Depósito Magmático de Ni-Cu. Dissertação de Mestrado, São Paulo. (2008)

PACHER, F., RABCEWICZ, L., GOLSER, J. Zum der seitigen Stand der Gebirgsklassifizierung in Stollen-und Tunnelbau. Proc. XXII Geomech. Colleq. Salzburg, pp. 51-58 (1974)

SMITH, M. L., WILLIAMS, R. E. Indicator Kriging for selective remediation. Moscow: University of Idaho, 43, pp. 23-30 (1996)

STAVROPOULOU, M., EXADAKTYLOS, G., SARATSIS, G. A Combined Three-Dimensional Geological-Geostatistical-Numerical Model of Underground Excavations in Rock. Rock Mechanics and Rock Engineering, 40 (3), pp. 213-243 (2007)

STEWART, S.B.V., FORSYTH, W.W. The Mathews method for open stope desing. CIM Bulletin, 88 (992), pp. 45-53 (1995)

TERZAGHI, K. Rock defects and loads on tunnel supports. Cambridge: Harvard University, pp. 17-99 (1946).

ULUSAY, R., HUDSON, J.A., Suggested Method for Determining Point Load Strength. The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006, pp. 53-60 (1985)

WICKHAM, G.E., TIEDEMANN, H.R., SKINENR, E.H. Support determination based on geologic predictions. Proc. North American rapid excav. tunneling conf, pp. 43-64 (1972)

YOU, K., LEE, J.S. Estimation of Rock Mass Classes using the 3 Dimensional Multiple Indicator Kriging Technique. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 21 (3/4), pp. 229-234 (2006)

Published

2015-07-08

How to Cite

Abichequer, L. A., Souza, L. E. de, Oliveira Neto, R., & Fabrício, J. F. (2015). Analysis and interpretation of massive quality parameters for geomechanical model proposition. Monografias Ambientais, 14, 62–79. https://doi.org/10.5902/2236130818712

Most read articles by the same author(s)