Condutividade hidráulica de raiz e capacidade fotossintética de mudas clonais de eucalipto com indução de deformações radiculares

Fábio Afonso Mazzei Moura de Assis Figueiredo, José Geraldo de Araújo Carneiro, Ricardo Miguel Penchel, Eliemar Campostrini, José Tarcísio de Lima Thiebaut, Deborah Guerra Barroso

Resumo


http://dx.doi.org/10.5902/1980509814566

A redução do ganho em biomassa de lenho em árvores tem sido atribuída à ocorrência de deformações radiculares ainda na fase de viveiro. O objetivo deste trabalho foi avaliar a condutividade hidráulica do sistema radicular, trocas gasosas e a eficiência fotoquímica de mudas clonais de eucalipto com e sem indução de deformações radiculares. Os tratamentos foram: 1 – mudas sem a indução de deformações radiculares (produzidas de acordo com metodologia operacional do viveiro da Fibria Celulose S.A.) e 2 – mudas com indução de deformações radiculares. A indução da deformação radicular não resultou em queda no volume radicular. Contudo, deformações radiculares provocaram redução na condutividade hidráulica do sistema radicular, assim como foram verificadas quedas na taxa fotossintética das mudas ao longo do dia. A queda da taxa fotossintética em mudas com indução de deformações radiculares está associada a fatores estomáticos e não estomáticos.


Palavras-chave


<i>Eucalyptus</i> spp; condutividade hidráulica; sistema radicular; trocas gasosas.

Texto completo:

PDF

Referências


ADIR, N. et al. Photoinhibition – a historical perspective. Photosynthesis Research, Netherlands, n. 76, 343-370, 2003.

ATWELL, B. J. Physiological responses of lupin roots to soil compaction. Plant and Soil, Crawley, n.111, p. 277-281, 1988.

BARROSO, D. G. et al. Efeitos do recipiente sobre o desempenho pós-plantio de Eucalyptus camaldulensis e E. urophylla. Revista Árvore, Viçosa-MG, v. 24, n. 3, p. 291-296, 2000.

BENGOUGH, A. G. et al. Root responses to soil physical conditions; growth dynamics from field to cell. Journal of Experimental Botany, Oxford, v. 57, n. 2, p. 437–447, 2006.

BOLHÀR-NORDENKAMPF, H. R. et al. Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. Functional Ecology, London, n. 3, p. 497-514, 1989.

CARMI, A.; HEUER, B. The Role of Roots in the Control of Bean Shoot Growth. Annals of Botany, Leicester, n. 48, p. 519-527, 1981.

FREITAS, T. A. S. Sistemas de blocos prensados para produção de mudas clonais de eucalipto. 2003, 115 f. Dissertação (Mestrado em Produção Vegetal) - Universidade Estadual do Norte Fluminense Darcy Ribeiro – Campos dos Goytacazes – RJ, 2003.

FREITAS, T. A. S. et al. Desempenho radicular de mudas de eucalipto produzidas em diferentes recipientes e substratos. Revista Árvore, Viçosa-MG, v. 29, n. 6, p. 853 – 861, 2005.

GODOY, L. J. G. et al. Índice relativo de clorofila e o estado nutricional em nitrogênio durante o ciclo do cafeeiro fertirrigado. Revista Brasileira de Ciência do Solo, Viçosa-MG, n. 32, p. 217-226, 2008.

GOTO, T. et al. Photosynthetic, evapotranspiratory and leaf morphological properties of chrysanthemum grown under root restriction as affected by fertigation frequency. Japanese Society for Horticultural Science, Tokyo, n.71, p. 277–283, 2002.

GUIMARAES, C. M.; MOREIRA, J. A. A. Compactação do solo na cultura do arroz de terras altas. Pesquisa Agropecuaria Brasileira, Brasília, v. 36, n. 4, 2001.

HAMEED, M. A.; REID, J. B.; ROWE R. N. Root confinement and its effects on the water relations, growth and assimilate partitioning of tomato (Lycopersicun esculentum Mill). Annals of Botany, Bristol, v. 59, n. 6, 685-692, 1987.

HARTUNG, W.; ZHANG, J.; DAVIES, W. J. Does abscisic acid play a stress physiological role in maize plants growing in heavily compacted soil? Journal Experimental Botany, Oxford, v. 45, n. 2, p. 221-226, 1994.

HENDRY, G. A. F.; PRICE, A. H. Stress indicators: chlorophylls and carotenoids. In: Hendry, G. A. F. and Grime J.P. (Eds.) London: Chapman & Hall, 148-152p. 1993.

HUANG, B.; EISSENSTAT, D. M. Linking hydraulic conductivity to anatomy in plants that vary in specific root length. American Society for Horticultural Science, Stanford, n. 125, p. 260–264, 2000.

HUANG, B.; NOBEL, P. S. Root hydraulic conductivity and its components, with emphasis on desert succulents. Agronomy Journal, Madison, n. 86, p. 767–774, 1994.

HUBBARD, R. M. et al. Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine. Plant, Cell & Environment, Logan, v. 24, n. 1, p. 113–121, 2001.

HURLEY, M. B.; ROWART, J. S. Resistance to root growth and changes in the concentrations of ABA within the root and xylem sap during root-restriction stress. Journal of Experimental Botany, Oxford, v. 50, n. 335, p. 799–804 1999.

JACKSON R. B.; SPERRY, J. S.; DAWSON, T. E. Root water uptake and transport: using physiological processes in global predictions. Trends in Plant Science, Cambridge, n. 5, p. 482–488, 2000.

MATERECHERA, S. A.; DEXTER, A. R.; ALTSON, A. M. Penetration of very strong soils buy seedlings roots of different plant species. Plant and Soil, Crawley, v. 135, p. 31-41, 1991.

MCELRONE, A. J. et al. Variation in xylem structure and function in stems and roots of trees to 20 m depth. New Phytologist, Sheffield, n. 163, p. 507–517, 2004.

MEINZER, F. C.; GRANTZ, D. A. Stomatal and hydraulic conductance in growing sugarecane: stomatal adjustment to water transport capacity. Plant, Cell and Environment, Logan, v. 13, n. 4, p. 383–388, 1990.

NAVARI-IZZO, F.; RASCIO, N. Plant response to water-deficit conditions. In: Pessarakli, M. ed. Handbook of plant and crop stress, New York: Marcel Dekker Inc, 1999. p. 231–270.

NETTO, A. T.; CAMPOSTRINI, E.; GOMES, M. M. A. Efeitos do confinamento radicular nas medidas biométricas e assimilação de CO2 em plantas de Coffea canephora Pierre. Revista Brasileira de Agrociência, Pelotas, v. 12, n. 3, p. 295-303, 2006.

NETTO A. T. et al. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in Coffea leaves. Scientia Horticulturae, Netherlands, n. 104, p. 199-209, 2005.

NIKOLOVA, P. S. et al. Combined application of computer tomography and light microscopy for analysis of conductive xylem area in coarse roots of European beech and Norway spruce. European Journal of Forest Research, Freising, n. 128, p. 145–153, 2009.

NOVAES, A. B. et al. Comportamento de mudas de Pinus taeda produzidas em raiz nua e em dois tipos de recipientes, 24 meses após o plantio. Floresta, Curitiba, n. 31, p. 62-71, 2002.

OSMONT, K. S.; SIBOUT, R.; HARDTKE, C. S. Hidden Branches: Developments in Root System Architecture. The Annual Review of Plant Biology, California, n. 58, p. 93–113, 2007.

PETERSON, T. A.; REINSEL, M. D.; KRIZEK, D. T. Tomato (Lycopersicon esculentum Mill., cv. ‘Better Bush’) Plant Response to Root Restriction. I. Alteration of Plant Morphology. Journal of Experimental Botany, Oxford, v. 42, n. 243, p. 1233-1240, 1991.

RASCHKE, K. Action of abscisic acid on guard cells. In: ZEIGER, E.; FARQUHAR, G. D.; COWAN, I. R., eds, Stomatal Function, Stanford: Stanford University Press, 1987. p 253–279.

REIS, A. R. et al. Diagnóstico da exigência do cafeeiro em nitrogênio pela utilização do medidor portátil de clorofila. Bragantia, Campinas, v. 65, n. 1, p. 163-171, 2006.

REIS, G. G. et al. Efeito da poda de raízes sobre a arquitetura do sistema radicular e o crescimento de mudas de Eucalyptus grandis e Eucalyptus citriodora produzidas em tubetes. Revista Árvore, Viçosa-MG, v. 15, n. 1, p. 43 – 54, 1991.

ROSENQVIST, E.; KOOTEN, O. V. Chlorophyll fluorescence: a geral description and nomenclature. In: DeELL, J. R.; TOIVONEN, P. M. A. Practical applications of chlorophyll fluorescence in plant biology, Dordrecht, Kluwer academic publishers, 2003. 259 p.

ROSSIELLO, R. O. P. et al. Comparação dos métodos fotoelétrico e da interseção na determinação da área, comprimento e raio médio radicular. Pesquisa Agropecuária Brasileira, Brasília, v. 30, n. 5, p. 633-638, 1995.

RUFF, M. S. et al. Restricted Root Zone Volume: Influence on Growth and Development of Tomato. American Society for Horticultural Science, Stanford, v. 112, n. 5, p. 763-769, 1987.

SALIENDRA, N. Z.; SPERRY, J. S.; COMSTOCK, J. P. Influence of leaf water status on stomatal response to humidity, hydraulic conductance, and soil drought in Betula occidentalis. Planta, Bonn, n. 196, p. 357–366, 1995.

SHI, K. et al. Low O2 supply is involved in the poor growth in root-restricted plants of tomato (Lycopersicon esculentum Mill.). Environmental and Experimental Botany, Paris, n. 61, p. 181–189, 2007.

SHI, K. et al. Root restriction-induced limitation to photosynthesis in tomato (Lycopersicon esculentum Mill.) leaves. Scientia Horticulturae, Netherlands, n. 117, p. 197–202, 2008.

SOLARI. L. I.; PERNICE, F.; DEJONG, T. M. The relationship of hydraulic conductance to root system characteristics of peach (Prunus persica) rootstocks. Physiologia Plantarum, Helsinki, n. 128, p. 324–333, 2006.

SPERRY, J. S.; POCKMAN, W. T. Limitation of transpiration by hydraulic conductance and xylem cavitation in Betula occidentalis. Plant, Cell and Environment, Logan, n. 16, p. 279–287, 1993.

TERNESI, M. et al. Root–shoot signalling in sunflower plants with confined root systems. Plant and Soil, Crawley, n. 166, p. 31–36, 1994.

TESKEY, R. O.; HINCKLEY, T. M.; GRIER, C. C. Effect of interruption of flow path on stomatal conductance of Abies amabilis. Journal of experimental botany, Oxford, n. 34, p. 1251 – 1259, 1983

TSCHAPLINSKI, T.J.; BLAKE, T.J. Effects of root restriction on growth correlations, water relations and senescence of alder seedlings. Physiologia Plantarum, Lund, v. 64, n. 2, p. 167-176, 1985.

TYREE, M. T. Hydraulic limits on tree performance: transpiration, carbon gain and growth of trees. Trees, Vancouver, n. 17, p. 95–100, 2003.

TYREE, M. T.; ZIMMERMANN, M.H. Xylem Structure and the Ascent of Sap, Berlin: Springer Verlag, 2002.

WILL, R. E.; TESKEY, R. O. Effect of elevated carbon dioxide concentration and root restriction on net photosynthesis, water relations and foliar carbohydrate status of loblolly pine seedlings. Tree Physiology, Durham. n. 17, p. 655–661, 1997.

ZHU, L. et al. Vine growth and nitrogen metabolism of ‘Fujiminori’ grapevines in response to root restriction. Scientia Horticulturae, Netherlands, v. 107, n. 143–149, 2006.




DOI: http://dx.doi.org/10.5902/1980509814566