Classificação de patologias em estruturas usando redes neurais convolucionais: diferenciação em trincas, fissuras e rachaduras
DOI:
https://doi.org/10.5902/2448190485429Palavras-chave:
Redes neurais convolucionaisResumo
Este estudo propõe uma abordagem baseada em redes neurais convolucionais (CNNs) para a classificação de trincas, fissuras e rachaduras por análise de imagens. A metodologia inclui pré-processamento, equilíbrio de dados e usa a arquitetura ResNet50 com camadas de pooling, dropout e regularização. Transformações avançadas de aumento de dados são aplicadas para superar a falta de imagens. O modelo atinge cerca de 96% de precisão, evidenciando sua eficácia. No entanto, oportunidades de aprimoramento são identificadas, como a expansão contínua do conjunto de dados. Em suma, este estudo oferece novas visões para a inspeção estrutural por meio de CNNs, com implicações práticas para a segurança e manutenção de infraestruturas.
Downloads
Referências
Alipour, M., & Harris, D. K. (2020). Increasing the robustness of material-specific deep learning models for crack detection across different materials. Engineering Structures, 206, 110157.
Bai, Y., Zha, B., Sezen, H., & Yilmaz, A. (2022).Engineering deep learning methods on automatic detection of damage in infrastructure due to extreme events. Structural Health Monitoring, 22(1), 338-352.
Boden, M. A. (2008). Mind as machine: A history of cognitive science. Oxford University Press.
Brito, T. F. D. (2017). Análise de manifestações patológicas na construção civil pelo método gut: estudo de caso em uma instituição pública de ensino superior.
Carvalho, N. F. De. (2009).Verificação de patologias de elementos estruturais em concreto armado. Revista Obras Civis, 1(1), 38-40.
Cha, Y. J., Choi, W., & Büyüköztürk, O. (2017). Deep learning‐based crack damage detection using convolutional neural networks. Computer‐Aided Civil and Infrastructure Engineering, 32(5), 361-378.
Chauhan, R., Ghanshala, K. K., & Joshi, R. C. (2018). Convolutional neural network (CNN) for image detection and recognition. In 2018 first international conference on secure cyber computing and communication (ICSCCC) (pp. 278-282). IEEE.
Chen, Z., Wang, C., Wu, J., Deng, C., & Wang, Y. (2022). Deep convolutional transfer learning-based structural damage detection with domain adaptation. Applied intelligence, 53(5), 5085-5099.
Corsini, R. (2010). Trinca ou fissura. São Paulo: Téchne, 160.
Datagen (2020) Resnet-50: The Basics And A Quick Tutorial. In: Datagen Blog. Disponível Em: < https://datagen.tech/guides/computer-vision/resnet-50/>. Acesso Em: 03 Set. 2023.
Dias, A. P. L., do Amaral, I. A. R., & dos Santos Amarante, M. (2021). Patologias das construções. Revista Pesquisa e Ação, 7(1), 66-80.
Diniz, J. de C. N., Paiva, A. C. de., Junior, G. B., Almeida, J. D. S. de., Silva, A. C., Cunha, A. M. T. da S., & Cunha, S. C. A. P. da S.. (2023). A Method for Detecting Pathologies in Concrete Structures Using Deep Neural Networks. 13(9), 16.
Gomide, T. L. F., Neto, J. C. P. F., Gullo, M. A., & Della Flora, S. M. (2020). Inspeção predial total. Oficina de Textos.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
Harris, S. Y. (2001). Building pathology: deterioration, diagnostics, and intervention. John Wiley & Sons.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S., & Hudspeth, A. J. (2012). Principles of Neural Science. McGraw-Hill Education. New York.
Kim, P. (2017). Matlab deep learning. With machine learning, neural networks and artificial intelligence. 130(21).
Li, Z., Liu, F., Yang, W., Peng, S., & Zhou, J. (2021). A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems.
Marr, D. (2010). Vision: A computational investigation into the human representation and processing of visual information. MIT press.
Mazer, W. (2012). Inspeção e ensaios em estruturas de concreto. Curitiba: UTFPR.
Melo, R. R. S., & Costa, D. B. (2015). Uso de veículo aéreo não tripulado (VANT) para inspeção de logística em canteiros de obra. SIBRAGEC-ELAGEC, São Carlos: São Paulo (Brasil).
Neumann, P. N., Cagol, A. C., Visoscki, P. C., & Edler, M. A. R. (2017). Patologias nas edificações: uma nova concepção na construção civil. Revista Interdisciplinar de Ensino, Pesquisa e Extensão-RevInt, 4(1).
Nielsen, M. A. (2015). Neural networks and deep learning (Vol. 25, pp. 15-24). San Francisco, CA, USA: Determination press.
O'Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458.
Oliveira, A. M. de. (2012). Fissuras, trincas e rachaduras causadas por recalque de diferencial de fundações.
Palmer, Stephen E. (1999). Vision Science: Photons To Phenomenology. Mit Pres.
Prabhu, S. R. (2023). Introduction to Pathology. In Textbook of General Pathology for Dental Students (pp. 1-4). Cham: Springer Nature Switzerland.
Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747.
Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61, 85-117.
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of big data, 6(1), 1-48.
Szeliski, R. (2022). Computer vision: algorithms and applications. Springer Nature.
Tondelo, P. G., & Barth, F. (2019). Análise das manifestações patológicas em fachadas por meio de inspeção com VANT. PARC Pesquisa em Arquitetura e Construção.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Revista ComInG - Communications and Innovations Gazette
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Os manuscritos aceitos e publicados são de propriedade da revista ComInG.
Os originais deverão ser acompanhados de documentos de transferência de direitos autorais contendo assinatura dos autores.
A carta de direitos autorais deve ser enviada para o e-mail coming@inf.ufsm.br
É vedada a submissão integral ou parcial do manuscrito a qualquer outro periódico. A responsabilidade do conteúdo dos artigos é exclusiva dos autores.
É vedada a tradução para outro idioma sem a autorização escrita do Editor ouvida a Comissão Editorial.
ENGLISH
Manuscripts accepted and published are the property of the journal ComInG.
The originals must be accompanied by documentation of copyright transfer containing the signature of the authors.
You may not submit full or partial manuscript to another journal. The responsibility of the article's content is exclusive of the authors.
You may not translating into another language without the written permission of the Editor after consultation with the Editorial Board.