Classificação de patologias em estruturas usando redes neurais convolucionais: diferenciação em trincas, fissuras e rachaduras

Authors

DOI:

https://doi.org/10.5902/2448190485429

Keywords:

Classificação de patologias em edificações

Abstract

This study proposes a convolutional neural networks (CNNs) based approach for classifying cracks, fissures, and fractures through image analysis. The methodology encompasses preprocessing, data balancing, and employs the ResNet50 architecture with pooling, dropout, and regularization layers. Advanced data augmentation techniques are applied to overcome image scarcity. The model achieves approximately 96% accuracy, highlighting its effectiveness. However, areas for improvement are identified, such as continuous expansion of the realistic dataset. In summary, this study provides valuable insights into structural inspection using CNNs, with practical implications for infrastructure security and maintenance.

Downloads

Download data is not yet available.

Author Biographies

Luís Gustavo Werle Tozevich, Federal University of Santa Maria

.

Giovani Rubert Librelotto, Federal University of Santa Maria

Giovani Rubert Librelotto concluiu o doutorado em Informática pela Universidade do Minho, em 2005. Atualmente é professor adjunto do Departamento de Linguagens e Sistemas de Computação (DLSC) da Universidade Federal de Santa Maria (UFSM). Publicou diversos artigos em periódicos especializados e em anais de eventos nacionais e internacionais. Participou de vários eventos no exterior e no Brasil. Atualmente coordena 2 projetos de pesquisa. Atua na área de Ciência da Computação, com ênfase em Compiladores. Em suas atividades profissionais interagiu com mais de 30 colaboradores em co-autorias de trabalhos científicos. Em seu currículo Lattes os termos mais freqüentes na contextualização da produção científica, tecnológica e artístico-cultural são: eXtensible Markup Language (XML), Linguagem RS - Reativa Síncrona, Topic Maps, Sistemas reativos distribuídos, Compiladores, Semantic Web, Programação de Computadores, Constraint Languages e Linguagens de Programação.

Pedro Luís Tozevich, Federal University of Santa Maria

Pedro Luís Tozevich possui Bacharelado em Engenharia Civil, obtido junto à Universidade Regional do Noroeste do Estado do Rio Grande do Sul. Adicionalmente, complementou sua formação por meio de uma pós-graduação na área de Georreferenciamento, Certificação e Gestão de Imóveis Rurais, conferida pela Faculdade Integrada de Santa Maria.

References

Alipour, M., & Harris, D. K. (2020). Increasing the robustness of material-specific deep learning models for crack detection across different materials. Engineering Structures, 206, 110157.

Bai, Y., Zha, B., Sezen, H., & Yilmaz, A. (2022).Engineering deep learning methods on automatic detection of damage in infrastructure due to extreme events. Structural Health Monitoring, 22(1), 338-352.

Boden, M. A. (2008). Mind as machine: A history of cognitive science. Oxford University Press.

Brito, T. F. D. (2017). Análise de manifestações patológicas na construção civil pelo método gut: estudo de caso em uma instituição pública de ensino superior.

Carvalho, N. F. De. (2009).Verificação de patologias de elementos estruturais em concreto armado. Revista Obras Civis, 1(1), 38-40.

Cha, Y. J., Choi, W., & Büyüköztürk, O. (2017). Deep learning‐based crack damage detection using convolutional neural networks. Computer‐Aided Civil and Infrastructure Engineering, 32(5), 361-378.

Chauhan, R., Ghanshala, K. K., & Joshi, R. C. (2018). Convolutional neural network (CNN) for image detection and recognition. In 2018 first international conference on secure cyber computing and communication (ICSCCC) (pp. 278-282). IEEE.

Chen, Z., Wang, C., Wu, J., Deng, C., & Wang, Y. (2022). Deep convolutional transfer learning-based structural damage detection with domain adaptation. Applied intelligence, 53(5), 5085-5099.

Corsini, R. (2010). Trinca ou fissura. São Paulo: Téchne, 160.

Datagen (2020) Resnet-50: The Basics And A Quick Tutorial. In: Datagen Blog. Disponível Em: < https://datagen.tech/guides/computer-vision/resnet-50/>. Acesso Em: 03 Set. 2023.

Dias, A. P. L., do Amaral, I. A. R., & dos Santos Amarante, M. (2021). Patologias das construções. Revista Pesquisa e Ação, 7(1), 66-80.

Diniz, J. de C. N., Paiva, A. C. de., Junior, G. B., Almeida, J. D. S. de., Silva, A. C., Cunha, A. M. T. da S., & Cunha, S. C. A. P. da S.. (2023). A Method for Detecting Pathologies in Concrete Structures Using Deep Neural Networks. 13(9), 16.

Gomide, T. L. F., Neto, J. C. P. F., Gullo, M. A., & Della Flora, S. M. (2020). Inspeção predial total. Oficina de Textos.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

Harris, S. Y. (2001). Building pathology: deterioration, diagnostics, and intervention. John Wiley & Sons.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S., & Hudspeth, A. J. (2012). Principles of Neural Science. McGraw-Hill Education. New York.

Kim, P. (2017). Matlab deep learning. With machine learning, neural networks and artificial intelligence. 130(21).

Li, Z., Liu, F., Yang, W., Peng, S., & Zhou, J. (2021). A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems.

Marr, D. (2010). Vision: A computational investigation into the human representation and processing of visual information. MIT press.

Mazer, W. (2012). Inspeção e ensaios em estruturas de concreto. Curitiba: UTFPR.

Melo, R. R. S., & Costa, D. B. (2015). Uso de veículo aéreo não tripulado (VANT) para inspeção de logística em canteiros de obra. SIBRAGEC-ELAGEC, São Carlos: São Paulo (Brasil).

Neumann, P. N., Cagol, A. C., Visoscki, P. C., & Edler, M. A. R. (2017). Patologias nas edificações: uma nova concepção na construção civil. Revista Interdisciplinar de Ensino, Pesquisa e Extensão-RevInt, 4(1).

Nielsen, M. A. (2015). Neural networks and deep learning (Vol. 25, pp. 15-24). San Francisco, CA, USA: Determination press.

O'Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458.

Oliveira, A. M. de. (2012). Fissuras, trincas e rachaduras causadas por recalque de diferencial de fundações.

Palmer, Stephen E. (1999). Vision Science: Photons To Phenomenology. Mit Pres.

Prabhu, S. R. (2023). Introduction to Pathology. In Textbook of General Pathology for Dental Students (pp. 1-4). Cham: Springer Nature Switzerland.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61, 85-117.

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of big data, 6(1), 1-48.

Szeliski, R. (2022). Computer vision: algorithms and applications. Springer Nature.

Tondelo, P. G., & Barth, F. (2019). Análise das manifestações patológicas em fachadas por meio de inspeção com VANT. PARC Pesquisa em Arquitetura e Construção.

Published

2023-12-02

How to Cite

Tozevich, L. G. W., Librelotto, G. R., & Tozevich, P. L. (2023). Classificação de patologias em estruturas usando redes neurais convolucionais: diferenciação em trincas, fissuras e rachaduras. Revista ComInG - Communications and Innovations Gazette, 7(1), 73–86. https://doi.org/10.5902/2448190485429

Most read articles by the same author(s)