TOTAL WOOD VOLUME ESTIMATION OF EUCALYPTUS SPECIES BY IMAGES OF LANDSAT SATELLITE

Authors

  • Elias Fernando Berra
  • Catize Brandelero
  • Rudiney Soares Pereira
  • Elódio Sebem
  • Laura Camila de Godoy Goergen
  • Ana Caroline Paim Benedetti
  • Diogo Belmonte Lippert

DOI:

https://doi.org/10.5902/198050987566

Keywords:

biophysics parameters, reflectance, vegetation indices

Abstract

http://dx.doi.org/10.5902/198050987566

Models relating spectral answers with biophysical parameters aim estimate variables, like wood volume, without the necessity of frequent field measurements. The objective was to develop models to estimate wood volume by Landsat 5 TM images, supported by regional forest inventory data. The image was geo-referenced and converted to spectral reflectance. After, the images-index NDVI (Normalized Difference Vegetation Index) and SR (Simple Ratio) was generated. The reflectance values of the bands (TM1, TM2, TM3 e TM4 ) and of the indices (NDVI and SR) was related with the wood volume. The biggest correlation with volume was with the NDVI and SR indices. The variables selection was made by Stepwise method, which returned three regression models as significant to explain the variation in volume. Finally, the best fitted model was selected (volume = -830,95 + 46,05 (SR) + 107,47 (TM2)), which was applied on the Landsat image where the pixels had started to represent the estimated volume in m³/ha on the Eucalyptus sp. production units. This model, significant at 95% confidence level, explains 68% of the wood volume variation.

Downloads

Download data is not yet available.

References

AGEFLOR - Associação Gaúcha de Empresas florestais. A próxima década das florestas - 20/03/2009. Disponível em: <(www.ageflor.com.br)> Acesso em: 12 de fevereiro de 2011.

BRANDÃO, Z. N. et al. Determinação de índices de vegetação usando imagens de satélite para uso em agricultura de precisão. In: CONGRESSO BRASILEIRO DE ALGODÃO, 5., 2005, Salvador. Anais.... Campina Grande: CNPA, 2005.

CANAVESI, V. et al. Estimativa de volume de madeira em plantios de Eucalyptus spp. utilizando dados hiperespectrais e dados topográficos. Árvore, Viçosa, v. 34, n. 3, p. 539-549, maio/jun. 2010.

CANAVESI, V., PONZONI, F.J. Relações entre variáveis dendrométricas de plantios de Eucalyptus sp. e valores de FRB de superfície de imagens do sensor TM/Landsat 5. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 13., 2007, Florianópolis. Anais.... INPE: São José dos Campos, 2007, p. 1619-1625.

FAZAKAS, Z. et al. Regional forest biomass and wood volume estimation using satellite data and ancillary data. Agricultural and Forest Meteorology, v. 98, p. 417−425, dez. 1999.

FERNANDES, D. H. F. M. et al. Uso de imagens ALOS para estimar parâmetros biofísicos em plantações de eucaliptos. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 15., 2011, Curitiba. Anais.... INPE: São José dos Campos, 2011, p. 1674-1671.

FONSECA, E. L. Desenvolvimento de modelo da disponibilidade de fitomassa aérea para formações campestres naturais a partir de dados espectrais orbitais e agrometeorológicos. 2004. Tese (Doutorado em Sensoriamento Remoto) – Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 2004.

GEBRESLASIE, M. T. The estimation of eucalyptus plantation forest structural attributes using medium and high spatial resolution satellite imagery. 2008. Tese (Doctor of Philosophy in Applied Environmental Science) - University of KwaZulu-Natal Pietermartizburg, South Africa, 2008.

GÜRTLER, S. et al. Planilha eletrônica para o cálculo da reflectância em imagens TM e ETM+ LANDSAT. Revista Brasileira de Cartografia, v. 57, p. 162-167, ago. 2005.

HALL, R. J. et al. Modeling forest stand structure attributes using Landsat ETM+ data: Application to mapping imaging spectrometer data. Remote Sensing of Environment, v.95, n.1, p.177-194, Mar. 2005.

HÄME, T. et al. A new methodology for estimation of biomass of conifer-dominated boreal forest using NOAA AVHRR data. International Journal of Remote Sensing, v. 18, p. 3211−3243, Jan. 1997.

JENSEN, J. R. Sensoriamento remoto do ambiente: uma perspective em recursos terrestres. São José dos Campos: Parêntese, 2009. 598 p.

JORDAN, C. F. Derivation of leaf-area index from quality of light on the forest floor. Ecology, v. 50, p. 663-666, July 1969.

KNIPLING, E. B. Physical and physiological basis for the reflectance visible and near infrared radiation from vegetation. Remote Sensing of Environment, v.1, n.3, p.155-159, Feb. 1970.

KRANKINA, O. N. et al. Carbon stores, sinks, and sources in forests of North-western Russia: Can we reconcile forest inventories with remote sensing results? Climatic Change, v. 67, p.257-272, Dec. 2004.

KRIEGLER, F. J. et al. Preprocessing transformations and their effects on multispectral recognition. In: INTERNATIONAL SYMPOSIUM ON REMOTES SENSING OF ENVIRONMENT, 6., 1969, Michigan, USA. Proceedings…Michigan: University of Michigan, 1969. p.97–131. Disponível em: < (http://adsabs.harvard.edu//abs/1969rse..conf...97K)> Acesso em: 04 de maio de 2010.

LU, D. et al. Relationship between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin. Forest Ecology and Management, Amsterdan, v. 198, n.1-3, p. 149-167, Jan./Mar. 2004.

MANDALLAZ, D. Geostatistical methods for double sampling schemes: application to combined forest inventory. Technical report, ETH Zürich, chair of forest inventory and planning, 133 p., 1993.

MENESES, P. R., MADEIRA NETTO, J. S. Sensoriamento remoto: reflectância de alvos naturais. Brasília: UNB-Embrapa Cerrados, 2001. 262 p.

MORENO, J. A. Clima do Rio Grande do Sul. Porto Alegre: Secretaria da Agricultura. 1961. 41 p.

PEARSON, R. L.; MILLER, L. D. Remote mapping of standing crop biomass for estimation of the productivity of the short-grass Prairie. In: INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT, 8., Ann Arbor, 1972. Proceedings. Ann Arbor: ERIM, 1972, pp. 1357–1381.

PETERSON, D.L., RUNNING, S.W. Aplications in Forest science and management. In: Asrar, G. Theory and applications of optical remote sensing. New York, John Wiley, 1989. Cap. 10, p. 429-473.

PINHEIRO, E. S. et al. Imagens Landsat e QuickBird são capazes de gerar estimativas precisas de biomassa aérea de Cerrado? In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 14., 2009, Natal. Anais... INPE:São José dos Campos, 2009, p. 2913-2920.

PINILLA, C. Elementos de teledetección. Madrid: RA-MA, 1995. 313 p.

PONZONI, F. J., SHIMABUKURO, Y. E.. Relação entre índices de vegetação e parâmetros biométricos de plantios de Eucalyptus urophylla e Eucalyptus camaldulensis em Cachoeira do Manteiga (MG). Árvore, Viçosa, v. 22, n. 3, p. 357-366, jul./set. 1998.

PONZONI, F. J., SHIMABUKURU, Y.E. Sensoriamento remoto no estudo da vegetação. São José dos Campos: A. Silva Vieira, 2007. 150 p.

PONZONI, F. J., SHIMABUKURU, Y.E. Sensoriamento remoto no estudo da vegetação. São José dos Campos: A. Silva Vieira, 2009. 127 p.

ROSENQVIST, A. et al. A review of remote sensing technology in support of the Kyoto protocol. Environmental Science & Policy, v. 6, p. 441−455, Oct. 2003.

ROUSE, J. W. et al. Monitoring vegetation systems in the Great Plains with ERTS. In: ETRS SYMPOSIUM, 3., 1973, Washington D.C., USA. Proceedings… Washington D.C.: NASA SP-351, 1973. p.309-317.

SANQUETTA, C. R; BALBINOT, C. R. R. Metodologias para determinação de biomassa florestal. In: Fixação de carbono: atualizações, projetos e pesquisas. Curitiba. 2004. p. 77-94.

SCHLERF, M. et al. Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. Remote Sensing of Environment, v. 95, n. 1, p.177-194, Mar. 2005.

SHIMABUKURO, Y. E. Shade Images Derived from Linear Mixing Models of Multispectral Measurements of Forested Areas. 1987. (Ph.D. Dissertation) - Colorado State University, Fort Collins, 1987.

SOUSA, C. L., PONZONI, F. J. Avaliação de índices de vegetação e de bandas TM/Landsat para estimativa de volume de madeira em floresta implantada de Pinus spp. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 9., 1998, Santos, SP. Anais.... INPE: São José dos Campos, 1998, v.13, p. 1725-1732.

THENKABAIL, P. S. et al. Detecting floristic structure and pattern across topographic and moisture gradients in a mixed species Central African forest using IKONOS and Landsat-7 ETM+ images. International Journal of Applied Earth Observation and Geoinformation, v. 4, n. 3, p.255-270, June 2003.

THOMAS, J. R., GAUSMAN, H. W. Leaf reflectance vs. leaf chlorophyll and carotenoid concentrations for eight crops. Agronomy Journal, v. 69, n. 5, p. 799- 802, 1977.

TOMPPO, E. et al. Simultaneous use of Landsat-TM and IRS-1c WiFS data in estimating large area tree stem volume and aboveground biomass. Remote Sensing of Environment, v. 82, p. 156−171, Sept. 2002.

TURNER, D. P. et al. Monitoring forest carbon sequestration with remote sensing and carbon cycle modeling. Environmental Management, v. 33, p. 457−466, Aug. 2004.

WATZLAWICK, L. F. et al. Estimativa de biomassa e carbono em floresta com araucaria utilizando imagens do satélite IKONOS II. Ciência Florestal, Santa Maria, v. 19, p.169-181, abr./jun. 2009.

WOOLLEY, J.T. Reflectance and transmitance of light by leaves. Plant Physiology, v.47, n.3, p. 656-662, May 1971.

XAVIER, A. C. et al. Estimativa de IAF de plantações de eucaliptos a partir de dados TM/Landsat. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 9., 1998, Santos. Anais... INPE: São José dos Campos, 1998. p. 1585-1596.

Published

2012-12-26

How to Cite

Berra, E. F., Brandelero, C., Pereira, R. S., Sebem, E., Goergen, L. C. de G., Benedetti, A. C. P., & Lippert, D. B. (2012). TOTAL WOOD VOLUME ESTIMATION OF EUCALYPTUS SPECIES BY IMAGES OF LANDSAT SATELLITE. Ciência Florestal, 22(4), 853–864. https://doi.org/10.5902/198050987566

Issue

Section

Technical Note

Most read articles by the same author(s)