Using drones for estimating fuel material in Cerrado grasslands
DOI:
https://doi.org/10.5902/1980509873469Keywords:
Remote sensing, UAV, EstimationAbstract
In the quest to advance fire prevention and control strategies, new techniques for quantifying combustible material are being explored. Among these, the use of multispectral sensors and red, green, and blue (RGB) cameras has emerged as promising solutions to streamline both cost and time expenditures in the field. This study aimed to assess the feasibility of employing an airborne multispectral sensor and an airborne RGB digital camera, mounted on a multirotor drone, to estimate combustible material load in a Cerrado area through linear regression analysis. Conducted within a savanna formation, the study involved evaluating 40 samples of combustible material load in 1 m² plots. Aerial surveys were conducted to capture images, facilitating the derivation of reflectance variables, vegetation indices, and descriptive parameters of the three-dimensional model. The resulting equation, customized to predict total combustible material within the study area, exhibited considerable significance (p < 0.001), accompanied by a determination coefficient (R²) of 0.70 and an adjusted R² of 0.65. Upon analyzing the variables’ impact on the model, it became evident that while the point density of the model showed higher correlations, the normalized difference vegetation index wielded notable influence, as indicated by its prominent weight within the adjusted equation.
Downloads
References
ALVARES, C. A.; STAPE, J. L.; SENTELHAS, P. C.; GONÇALVES, J. L. M.; SPAROVEK, G. Koppen's climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, p.711-728, 2014. http://dx.doi.org/10.1127/0941-2948/2013/0507
BANU, P. T. J.; BORLEA, F. G.; BANU, C. The use of drones in forestry. Journal of Environmental Science and Engineering, v. 05, n. 01, p.557-562, 2016. https://doi.org/10.17265/2162-5263/2016.11.007
BENDIG, J.; BOLTEN, A.; BENNERTZ, S.; BROSCHEIT, J.; EICHFUSS, S.; BARETH, G. Estimating biomass of barley using crop surface models (CSMs) derived from UAV – based RGB imaging. Remote Sensing, v. 6, n. 11, p.10395-10412, 2014. https://doi.org/10.3390/rs61110395
BENDIG, J.; Yu, K.; Aasen, H.; BOLTEN, A.; BENNERTZ, S.; BROSCHEIT, J.; GNYP, L. M.; BARETH, G. Combining UAV-based plant height from crop surface models, visible and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied Earth Observation and Geoinformation, v. 39, p.79-87, 2015. http://dx.doi.org/10.1016/j.jag.2015.02.012
BERNI, J. A. J.; TEJADA, Z. J. P.; FERES, E. Thermal and Narrowband Multispectral Remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Transactions on Geoscience and Remote Sensing, v. 01, n. 01, p.01-17, 2009. https://doi.org/10.1109/TGRS.2008.2010457
BOWERMAN, B. L, O’CONNELL, R. T. Linear statistical models: an applied approach. 2. ed. Belmont (CA): Duxbury, 1990.
CUNLIFFE, A. M.; BRAZIER, R. E.; ANDERSON, K. Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry. Remote Sensing of Environment, v. 183, p.129-143, 2016. https://doi.org/10.1016/j.rse.2016.05.019
FERRAZ, A. S.; SOARES, V. P.; SOARES, C. P. B.; RODY, Y. P.; RIBEIRO, C. A. A. S.; BINOTI, D. H. B.; LEITE, H. G.; LEITE, F. P. Estimativa do estoque de biomassa em um fragmento florestal usando imagens orbitais. Floresta e Ambiente, v. 21, n. 3, p.286-296, 2014.
GEIPEL, J.; LINK, J.; CLAUPEIN, W. Combined spectral and spatial modeling of corn yield based on aerial imagens and crop surface models acquired with an unmanned aircraft system. Remote Sensing, v. 6, n. 11, p.10335-10355, 2014. http://doi.org/10.3390/rs61110335
HUNT, E. R.; CAVIGELLI, M.; DAUGHTRY, C. S. T.; MCMURTREY, J. E.; WALTHALL, C. L. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precision Agriculture, v. 6, p.359-378, 2005.
JANNOURA, R.; BRINKMANN, K.; UTEAU, D.; BRUNS, C.; JOERGENSEN, R. G. Monitoring of crop biomass using true colour aerial photographs taken from a remote controlled hexacopter. Biosystems Engineering, v. 129, p.341-351, 2015. https://doi.org/10.1016/j.biosystemseng.2014.11.007
JORGE, L. A. C.; INAMASU, R. Y. Uso de veículos aéreos não tripulados (VANT) em agricultura de precisão. Embrapa Instrumentação, 2014. Disponível em: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1003485/uso-de-veiculos-aereos-nao-tripulados-vant-em-agricultura-de-precisao. Acesso em: 24 out. 2022.
LI, W.; NIU, Z.; CHEN, H.; LI, D.; WU, M.; ZHAO, W. Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system. Ecological Indicators, v. 67, n. 01, p.637-648, 2016. http://dx.doi.org/10.1016/j.ecolind.2016.03.036
MARCUSSI, B. A.; BUENO, P. R. C.; MIQUELONI, P. D.; ARRAES, L. C. Utilização de índices de vegetação para os sistemas de informação geográfica. Caminhos de geografia, v. 11, n. 35, p.353-362, 2010.
MENARD, S. Sage university paper series on quantitative applications in the social sciences. Applied logistic regression analysis, Sage Publications Thousand Oaks, California, 1995.
MOTOHKA, T.; NASAHARA, K.; HIROYUKI, O.; SATOSHI, T. Applicability of green-red vegetation index for remote sensing of vegetation phenology. Remote Sensing, v. 02, n. 01, p.2369-2387, 2010. https://doi.org/10.3390/rs2102369
MYERS, R. Classical and modern regression with applications. 2. ed. Boston (MA): Duxbury. 1990, p.488.
PONZONI, J. F.; SHIMABUKURU, Y. E.; KUPLICH, T. M. Sensoriamento remoto da vegetação. 2. ed. Atualizada e ampliada, São Paulo, SP: Oficina de Textos, 2015. 45p.
RODRIGUES, R. A; GALLARDO, F. C. L. A. Vantagens da aerofotogrametria por drone na obtenção de dados topográficos em estudos de lixões e aterros sanitários. In: VII simpósio internacional de gestão de projetos, inovação e sustentabilidade. Anais. São Paulo, 2018. p. 01-15.
ROUSE, W.; HAAS, H. R.; SCHELL, A. J.; DEERING, W. D. Monitoring vegetation systems in the Great Plains with ERT. 1. ed. Washington, NASA: third earth resources technology Satellite-1 symposium, 1974, 309 p.
SANTOS, M. M.; BATISTA, C. A.; CARVALHO, E. DE.; SILVA, C. F. DE. Relationships between moisture content and flammability of campestral Cerrado species in Jalapão. Revista Brasileira de Ciências Agrárias, v. 13, n. 04, p.1-9, 2018. https://doi.org/10.5039/agraria.v13i4a5587
SCHMIDT, B.; FONSECA, B. C.; FERREIRA, C. M.; SATO, N. M. Experiências internacionais de manejo integrado do fogo em áreas protegidas – recomendações para implementação de manejo integrado de fogo no Cerrado. Biodiversidade Brasileira, v. 06, n. 02, p.41-54, 2016.
SEPLAN - Secretaria do Planejamento Superintendência do Planejamento e Gestão Central de Políticas Públicas (SEPLAN). Diretoria de Zoneamento Ecológico-Econômico (DEZ). Base de dados geográficos do Tocantins, Palmas, SEPLAN/DEZ, 2012. Disponível em: https://www.to.gov.br/seplan/base-de-dados-geograficos-do-tocantins-atualizacao-2012/d7n1qsd70x2. Acessado em: 20 out. 2022.
SOARES, V. R.; BATISTA, C. A.; TETTO, A. F. Incêndios Florestais: Controle, efeitos e uso do fogo. 2. ed. Curitiba, Paraná: UFPR, 2017. 47p.
SOUZA, V. I.; SANTOS, M. M..; GIONGO, M.; CARVALHO, V. E. de.; MACHADO, S. E. I. Estimativa do material combustível em área de Cerrado campo sujo a partir de imagens do sensor RGB. Pesquisa Florestal Brasileira, v. 3, n. 01, p.01-06, 2018. https://doi.org/10.4336/2018.pfb.38e201801706
STRASSBURG, N. B. B.; BROOKS, T.; FELTRAN-BARBIERI, R.; IRIBARREM, A. Moment of truth for the Cerrado hotspot. Nature ecology & evolution, v. 01, n. 01, p.1-3, 2017. https://doi.org/10.1038/s41559-017-0099
TAVARES, M. E. F. Metodologias usadas na quantificação de material combustível no Cerrado. Vértices, v. 19, n. 1, p.175-182, 2017.
TUMLISAN, G. Y. G. Monitoring growth development and yield estimation of maize using very high-resolution UAV-images in Gronau, Germany. 2017. 52 p. Dissertação (Mestrado em Geo – Ciência da Informação e Observação da Terra) - University of Twent, Netherlands, 2017.
YUE, J.; YANG, G.; LI, C.; LI, Z.; WANG, Y.; FENG, H.; XU, B. Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models. Remote Sensing, v. 9, n. 708, p.01-19, 2017. https://doi.org/10.3390/rs9070708.36
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ciência Florestal
This work is licensed under a Creative Commons Attribution 4.0 International License.
A revista CIÊNCIA FLORESTAL reserva-se o direito de realizar, nos originais, alterações de ordens normativas, ortográficas e gramaticais, com vistas a manter o padrão escolar da língua, mas respeitando o estilo dos autores. As provas finais podem ou não ser enviadas aos autores.