Evaluation of polarimetric data and texture attributes in SAR images to discriminate secondary forest in an area of amazon rainforest
DOI:
https://doi.org/10.5902/1980509871235Keywords:
Amazon, Secondary vegetation, Remote sensingAbstract
This study aims to evaluate the ability of Sentinel-1 polarimetric and backscatter attributes in relation to COSMO-SkyMed (CSM) texture and backscatter features to discriminate secondary vegetation areas in an Amazon Forest domain area, located in Mato Grosso state. In this study, we used polarizations VV and VH from Sentinel-1 Synthetic Aperture Radar (SAR) image and HH from CSM SAR image, both in Single Look Complex format. In the Sentinel-1 image, a covariance matrix was generated and the H-Alpha target decomposition theorem was applied, allowing to obtain the attributes Entropy and Angle alpha. In the CSM image obtained the Gray-Level Co-Occurrence Matrix (GLCM) texture attributes: dissimilarity, contrast, homogeneity and second moment. The Support Vector Machine (SVM) algorithm was used for the classification. The Sentinel-1 polarimetric attributes result, with a Kappa index of 0.70 and an overall accuracy of 79.58%, performed better than those derived from CSM, with a Kappa index of 0.56 and overall accuracy 63.67%. However, the Sentinel-1 and CSM attributes did not present satisfactory results to discriminate the different stages of secondary forest.
Downloads
References
AZEVEDO, A. R. de; SANTOS, J. R. dos; GAMA, F. F.; GRAÇA, P. M. L. de A.; MURA, J. C. Caracterização de uso e cobertura da terra na Amazônia utilizando imagens duais multitemporais do COSMO-SkyMed. Acta Amazonica, v. 44, n. 1, p. 87- 98, 2014.
BERNARD, E.; PENNA, L. A.; ARAÚJO, E. Downgrading, downsizing, gazettement, and reclassification of protected areas in Brazil. Conservation Biology, v. 28, n. 4, p. 939-950, 2014.
CARTUS, O.; KELLNDORFER, J.; WALKER, W.; FRANCO, C.; BISHOP, J.; SANTOS, L.; FUENTES, J. M. M. A national, detailed map of forest aboveground carbon stocks in Mexico. Remote Sensing, v. 6, n. 6, p. 5559-5588, 2014.
CARVALHO, R.; ADAMI, M.; AMARAL, S.; BEZERRA, F. G.; AGUIAR, A. P. D. de. Changes in secondary vegetation dynamics in a context of decreasing deforestation rates in Pará, Brazilian Amazon. Applied Geography, v. 106, p. 40-49, 2019.
CONGALTON, R. G.; GREEN, K. Assessing the accuracy of remotely sensed data: principles and practices. 2.ed. New York: Lewis Publishers, 183 pp., 2009.
CLOUDE, S. R.; POTTIER, E. A review of target decomposition theorems in radar polarimetry. IEEE transactions on geoscience and remote sensing, v. 34, n. 2, p. 498-518, 1996.
CLOUDE, S. R.; POTTIER, E. An entropy-based classification scheme for land application of polarimetric SAR. IEEE Transactions on Geoscience and Remote Sensing, v. 35, n.1, p. 68-78, 1997.
DING, B.; WEN, G. Exploiting multi-view SAR images for robust target recognition. Remote Sensing, v. 9, n. 11, p.1150, 2017.
DURO, D. C.; FRANKLIN, S. E.; DUBÉ, M. G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sensing of Environment, v. 118, p. 259-272, 2012.
ESA. European Space Agency. Copernicus Sentinel-1: The SAR imaging constellation for land and ocean services, 2019. Available at: https://earth.esa.int/web/eoportal/satellite-missions/c-missions/copernicus-sentinel-1. Access in: 10 September 2019.
FURTADO, L. F. A.; SILVA, T. S. F.; MORAES, E. M. L. M. Dual-season and full-polarimetric C band SAR assessment for vegetation mapping in the Amazon varzea wetlands. Remote Sensing of Environment, v. 174, p. 212-222, 2016.
GAMA, F. F.; MURA, J. C.; ALBUQUERQUE, P. C. G. de; SANTOS, J. R. dos. Avaliação do potencial da interferometria sar para o mapeamento altimétrico de áreas reflorestadas por eucalyptus sp. Boletim de Ciências Geodésicas, v. 16, n.4, p. 519-537, 2010.
GARRETT, R. D.; CAMMELLI, F.; FERREIRA, J.; LEVY, S. A.; VALENTIM, J.; VIEIRA, I. Forests and Sustainable Development in the Brazilian Amazon: History, Trends, and Future Prospects. Annual Review of Environment and Resources, v. 46, p. 625-652, 2021.
HARALICK, R. M.; SHANMUGAM, K.; DINSTEIN, I. Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics, v. 6, p. 610-621, 1973.
HEINRICH, V. H. A.; DALAGNOL, R.; CASSOL, H. L. G.; ROSAN, T. M.; ALMEIDA, C. T. de; SILVA JUNIOR, C. H. L.; CAMPANHARO, W. A.; HOUSE, J. I.; SITCH, S.; HALES, T. C.; ADAMI, M.; ANDERSON, L. O.; ARAGÃO, L. E. O. C. Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change. Nature Communications, v. 12, p. 1-11, 2021.
IBGE. Amazônia Legal. Available at: https://www.ibge.gov.br/geociencias/cartas-e-mapas/mapas-regionais/15819-amazonia-legal.html?=&t=acesso-ao-produto. Access in: 12 September 2022.
IBGE. Manual Técnico da Vegetação Brasileira. Manuais Técnicos em Geociências, n. 1, Rio de Janeiro, IBGE, 274 p, 2012.
JAFARPOUR, S.; SEDGHI, Z.; AMIRANI, M. C. A robust brain MRI classification with GLCM features. International Journal of Computer Applications, v. 37, n.12, p. 1-5, 2012.
JAKOVAC, C. C.; PEÑA-CLAROS, M.; KUYPER, T. W.; BONGERS, F. Loss of secondary‐forest resilience by land‐use intensification in the Amazon. Journal of Ecology, v. 103, n.1, p. 67-77, 2015.
KUCK, T. N.; GOMEZ, L. D.; SANO, E. E.; BISPO, P. D. C.; HONÓRIO, D. D. Performance of Speckle Filters for COSMO-SkyMed Images from the Brazilian Amazon. IEEE Geoscience and Remote Sensing Letters, v. 19, p. 1-5, 2021.
KUGLER, F.; SCHULZE, D.; HAJNSEK, I.; PRETZSCH, H.; PAPATHANASSIOU, K. P. TanDEM-X Pol-InSAR performance for forest height estimation. IEEE Transactions on Geoscience and Remote Sensing, v. 52, n.10, p. 6404-6422, 2014.
KUPLICH, T. M. Classifying regenerating forest stages in Amazonia using remotely sensed images and a neural network. Forest Ecology and Management, v. 234, n.1-3, p. 1-9, 2006.
KUPLICH, T. M.; CURRAN, P. J.; ATKINSON, P. M. Relating SAR image texture to the biomass of regenerating tropical forests. International Journal of Remote Sensing, v. 26, n.21, p. 4829-4854, 2005.
LANDIS, J. R.; KOCH, G. G. The measurement of observer agreement for categorical data. Biometrics, v. 33, p. 159-174, 1977.
LEE, R.; DE GRANDI, M. R.; DE GRANDI, G. Polarimetric SAR speckle filtering and its implication for classification. IEEE Transactions on Geoscience and Remote Sensing, v. 37, v. 5, p. 2363-2373, 1999.
LI, G.; LU, D.; DUTRA, L.; BATISTELLA, M. A comparative analysis of ALOS PALSAR L-band and RADARSAT-2 C-band data for land-cover classification in a tropical moist region. ISPRS Journal of Photogrammetry and Remote Sensing, v. 70, p. 26-38, 2012.
LUCAS, R. M.; HONZÁK, M.; CURRAN, P. J.; FOODY, G. M.; MILNE, R.; BROWN, T.; AMARAL, S. Mapping the regional extent of tropical forest regeneration stages in the Brazilian Legal Amazon using NOAA AVHRR data. International Journal of Remote Sensing, v. 21, n. 15, p. 2855-2881, 2000.
MAPBIOMAS. MapBiomas v. 6.0. Available at: https://mapbiomas.org/en/statistics. Access in: 25 June 2022.
NOBRE, C. A.; SAMPAIO, G.; BORMA, L. S.; CARDOSO, M. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proceedings of the National Academy of Sciences, v. 113, n. 39, p. 10759-10768, 2016.
PEREIRA, L. O.; FREITAS, C. C.; SANT’ANNA, S. J. S.; REIS, M. S. ALOS/PALSAR data evaluation for land use and land cover mapping in the Amazon region. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, v. 9, n. 12, p. 5413-5423, 2016.
PONZONI, F. J.; REZENDE, A. N. P. Caracterização espectral de estágios sucessionais de vegetação secundária arbórea em Altamira (PA), através de dados orbitais. Revista Árvore, v. 28, p. 535–545, 2004.
PÔSSA, E. M.; GAMA, F. F.; SANTOS, J. R. dos; MURA, J. C.; BISPO, P. da C. Análise de uso e cobertura da terra na região do tapajós, Amazônia central, a partir de dado polarimétrico PALSAR/ALOS-1 e coerência interferométrica TanDEM-X. Revista Brasileira de Geografia Física, v. 11, n. 6, p. 2094-2108, 2018.
REICHE, J.; HAMUNYELA, E.; VERBESSELT, J.; HOEKMAN, D.; HEROLD, M. Improving near-real time deforestation monitoring in tropical dry forests by combining dense Sentinel-1 time series with Landsat and ALOS-2 PALSAR-2. Remote Sensing of Environment, v. 204, p. 147-161, 2018.
SANTOS, M.V. Zoneamento Sócio-Econômico-Ecológico: diagnóstico sócio-econômico-ecológico do Estado de Mato Grosso e assistência técnica na formulação da 2ª aproximação. Cuiabá, MT: SEPLAN-MT, 2000.
SIPAM. Projeto Amazônia SAR: desenvolvimento operacional e primeiros resultados na identificação do desmatamento com Radar orbital. Available at: http://www.sipam.gov.br/projeto-amazonia-sar. Access in: 21 September 2021.
SOTHE, C.; ALMEIDA, C. M. de; LIESENBERG, V.; SCHIMALSKI, M. B. Evaluating Sentinel-2 and Landsat-8 Data to Map Successional Forest Stages in a Subtropical Forest in Southern Brazil, Remote Sensing, v. 9, n. 8, p. 838, 2017.
TERRACLASS. Amazonia Legal. Available at: https://www.terraclass.gov.br/geoportal-aml/ Access: 3 February 2022.
TREUHAFT, R.; GONÇALVES, F.; SANTOS, J. R. dos; KELLER, M.; PALACE, M.; MADSEN, S. N.; SULLIVAN, F.; GRAÇA, P. M. L. A. Tropical-forest biomass estimation at X-band from the spaceborne TanDEM-X interferometer. IEEE Geoscience and Remote Sensing Letters, v. 12, n. 2, p. 239-243, 2015.
WIEDERKEHR, N. C.; GAMA, F. F.; CASTRO, P. B. N.; BISPO, P. da C.; BALZTER, H.; SANO, E. E.; LIESENBERG, V.; SANTOS, J. R.; MURA, J. C. Discriminating Forest successional stages, forest degradation, and land use in central amazon using ALOS/PALSAR-2 full-polarimetric data. Remote Sensing, v.12, p. 3512, 2020.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ciência Florestal
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
A revista CIÊNCIA FLORESTAL reserva-se o direito de realizar, nos originais, alterações de ordens normativas, ortográficas e gramaticais, com vistas a manter o padrão escolar da língua, mas respeitando o estilo dos autores. As provas finais podem ou não ser enviadas aos autores.