Calibration of volume equation in stands of <i>Acacia mearnsii</i> De Wild.
DOI:
https://doi.org/10.5902/1980509864859Keywords:
Tree scaling, Mixed models, BLUP, Random effectAbstract
The fitting of volume models by the traditional method (data obtained by means of scaling several trees), is the most used way to obtain volume equations. This method requires a lot of effort and is quite costly, therefore some alternatives have been developed to decrease the sampling of the number of trees and obtain results of estimates similar to that obtained by the traditional method, highlighting the mixed modeling applied to calibrate equations. In this work, the general objective of the research was to calibrate the Schumacher-Hall volume model by predicting random effects at the stand level and comparing it with the equations obtained using the traditional approach. The database is made up of 670 trees with ages varying from 1 to 10.75 years. The calibrations tested in the mixed model were using: (i) the largest tree of variable d for each stand; (ii) the two largest trees of variable d for each stand; (iii) the three largest trees in d for each stand; (iv) the four largest trees in d for each stand; (v) the five largest trees in d for each stand; (vi) the median tree for variable d in each stand; vii) one random tree in each stand; viii) three trees, being the smallest tree, the mean tree and the largest tree for the variable d for each stand; ix) three trees, being the mean tree, the mean tree minus two standard deviations and the mean tree plus two standard deviations for the variable d in each stand. The statistics for evaluating the equations were the coefficient of determination, the standard error of the estimate, the analysis of residuals, and the graphical analysis of the observed and estimated values. The results show that the volume equations can be calibrated at the stand level by sampling three trees: the average tree, the average tree plus two standard deviations, and the average tree minus two standard deviations. Considering that in the traditional method, 50 trees on average are measured in the forest inventory, the reduction of sampling in a new stand would be 94%.
Downloads
References
ANTUNES, R. M.; CASTILHOS, R. M. V.; CASTILHO, D. D.; LEAL, O. D. A.; ANDREAZZA, R. Crescimento inicial de acácia-negra com verme-compostos de diferentes resíduos agroindustriais. Ciência Florestal, v. 26, n. 1, p. 1-9, 2016.
CAO, Q. V.; WANG W. Calibrating fixed-and mixed-effects taper equations. Forest Ecology and Management, v. 262, n. 4, p. 671-673, 2011.
CHAPAIGN, T. R.; SHARMA, R. P. Modeling form factors for sal (Shorea robusta Gaertn.) using tree and stand measures, and random effects. Forest Ecology and Management, v. 482, p. 118807, 2021.
DANTAS, D.; CALEGARIO, N.; JÚNIOR, F. W. A.; CARVALHO, S. D. P. C.; JÚNIOR, M. A. I.; MELO, E. de. A. Multilevel nonlinear mixed-effects model and machine learning for predicting the volume of Eucalyptus spp. trees. Cerne, v. 26, n. 1, p. 48-57, 2020.
DUTCĂ, I.; MATHER, R.; BLUJDEA, V. N.; IORAS, F.; OLARI, M.; ABRUDAN, I. V. Site-effects on biomass allometric models for early growth plantations of Norway spruce (Picea abies (L.) Karst.). Biomass and Bioenergy, v. 116, p. 8-17, 2018.
FU, L.; SUN, W.; WANG, G. A climate-sensitive aboveground biomass model for three larch species in northeastern and northern China. Trees, v. 31, n. 2, p. 557-573, 2017.
GEITMANN, A.; GRIL, J. Plant biomechanics: From structure to function at multiple scales. Cham, Switzerland: Springer International Publishing, 2018, 450 p.
JACOBS, M.; RAIS, A.; PRETZSCH, H. Analysis of stand density effects on the stem form of Norway spruce trees and volume miscalculation by traditional form factor equations using terrestrial laser scanning (TLS). Canadian Journal of Forest Research, v. 50, n. 1, p. 51-64, 2020.
KERSHAW, J. A.; DUCEY, M. J.; BEERS, T. W.; HUSCH, B. Forest mensuration. 5th ed. Wiley: Hoboken, NJ, USA, 2016, p. 592.
KING, D. A. Size-related changes in tree proportions and their potential influence on the course of height growth. In: MEINZER, F. C.; LACHENBRUCH, B.; DAWSON, T. E. Size-and age-related changes in tree structure and function. Springer, Dordrecht, NY, 2011. p. 165-191.
MARZILIANO, P. A.; TOGNETTI, R.; LOMBARDI, F. Is tree age or tree size reducing height increment in Abies alba Mill. at its southernmost distribution limit? Annals of Forest Science, v. 76, n. 1, p. 17, 2019.
Microsoft Excel. Versão 15.0. Redmond, Washington: Microsoft 365, 2013. Disponível em: https://www.microsoft.com/pt-br/microsoft-365/excel. Acesso em: 27 agosto 2020.
OGANA, F. N.; CORRAL-RIVAS, S.; GORGOSO-VARELA, J. J. A new generalized height-diameter model with mixed-effect for Pinus pinaster Ait. and Pinus radiata d. Don. Cerne, v. 26, n. 1, p. 150-161, 2020.
ÖZÇELIK, R.; CAO, Q. V.; TRINCADO, G.; GÖÇER, N. Predicting tree height from tree diameter and dominant height using mixed-effects and quantile regression models for two species in Turkey. Forest ecology and management, v. 419, p. 240-248, 2018.
PINHEIRO, J. C.; BATES, D. M. Mixed-effects models in S and S-PLUS. Ed. Nova York: Springer-Verlag, 2000. p. 548.
RESENDE, M. D. V. de. Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Breeding and Applied Biotechnology, v. 16, n. 4, p. 330-339, 2016.
SANQUETTA, C. R.; DALLA CORTE, A. P.; BEHLING, A.; OLIVEIRA P. de, L. R.; PÉLLICO NETTO, S.; RODRIGUES, A. L.; SANQUETTA, M. N. I. Selection criteria for linear regression models to estimate individual tree biomasses in the Atlantic Rain Forest, Brazil. Carbon Balance and Management, v. 13, n. 1, p. 25, 2018.
SAS Studio. SAS ONDEMAND FOR ACADEMICS. Versão 3.8 (Enterprise Edition). Cary, NC, USA: SAS Institute Inc., 2019. Disponível em: https://www.sas.com/en_us/software/studio.html. Acesso em: 27 agosto 2020.
SILVA, M. C.; VIEIRA, A. C.; ATAÍDE, Y. B.; RAMOS, Y. A.; COELHO, M. C. B.; GIONGO, M.; ERPEN, M. L. Volume, funções probabilísticas e produtividade em plantio de Calophyllum brasiliense no município de Dueré (TO). Advances in Forestry Science, v. 6, n. 2, p. 623-630, 2019.
TAYLOR, D.; PAWAR, V.; KRUZIKAS, D. T.; GILMORE, K. E.; SANON, M.; WEINSTEIN, M. C. Incorporating calibrated model parameters into sensitivity analyses. Pharmacoeconomics, v. 30, n. 2, p. 119-126, 2012.
VALBUENA, R.; HEISKANEN, J.; AYNEKULU, E.; PITKÄNEN, S.; PACKALEN, P. Sensitivity of above-ground biomass estimates to height-diameter modelling in mixed-species West African woodlands. PloS One, v. 11, n. 7, p. e0158198, 2016.
VANDERSCHAAF, C. L. Predictive ability of mixed-effects height–diameter models fit using one species but calibrated for another species. Forest Science, v. 66, n. 1, p. 14-24, 2020.
VISMARA, E. de. S.; MEHTÄTALO, L.; BATISTA, J. L. F. Linear mixed-effects models and calibration applied to volume models in two rotations of Eucalyptus grandis plantations. Canadian Journal of Forest Research, v. 46, n. 1, p. 132-141, 2016.
XIANG, W.; LI, L.; OUYANG, S.; XIAO, W.; ZENG, L.; CHEN, L.; LEI, P.; DENG, X.; ZENG, Y.; FANG, J.; FORRESTER, D. I. Effects of stand age on tree biomass partitioning and allometric equations in Chinese fir (Cunninghamia lanceolata) plantations. European Journal of Forest Research, p. 1-16, 2020.
YANG, Z.; LIU, Q.; LUO, P.; YE, Q.; SHARMA, R. P.; DUAN, G.; ZHANG, H.; FU, L. Nonlinear mixed-effects height to crown base model based on both airborne LiDAR and field datasets for Picea crassifolia Kom trees in northwest China. Forest Ecology and Management, v. 474, p. 118323, 2020.
ZHANG, X.; WANG, H.; CHHIN, S.; ZHANG, J. Effects of competition, age and climate on tree slenderness of chinese fir plantations in southern China. Forest Ecology and Management, v. 458, p. 117815, 2020.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ciência Florestal

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
A revista CIÊNCIA FLORESTAL reserva-se o direito de realizar, nos originais, alterações de ordens normativas, ortográficas e gramaticais, com vistas a manter o padrão escolar da língua, mas respeitando o estilo dos autores. As provas finais podem ou não ser enviadas aos autores.