In vitro propagation of <i>Colubrina glandulosa</i> Perkins: a potential native species for reforestation programs

Authors

DOI:

https://doi.org/10.5902/1980509853294

Keywords:

Sobraji, Micropropagation, Meta-topoline, PPM™

Abstract

Colubrina glandulosa (sobraji) is a fast-growing timber species with a straight trunk, with the potential to form homogeneous reforestation, either by itself or associated with other species. In the view of this, we sought to establish a micropropagation protocol, using seeds and nodal segments, aiming at the production of seedlings on a commercial scale. The seeds were disinfected in NaClO 6% for 10, 20 or 30 minutes and sown in MS culture medium supplemented, or not, with 0.5 mL L-1 of Comet®. The nodal segments were disinfected in 2% NaClO and 5% PPM solution, introduced in WPM culture medium, supplemented with PPM (0; 0.2 or 0.4%) and 0.5 mL L-1 of Comet® associated with 0.75 g L-1 of sodium ampicillin or 2 mL L-1 Kasumin®. In multiplication, nodal segments were grown in WPM culture medium supplemented with BAP (6-benzylaminopurine) or mT (meta-topoline) (2; 4; 8 or 12 µM), combined with the presence or absence of ANA (naphthalenoacetic acid) (2 µM) in three subcultures. For rooting, the WPM/2 culture medium supplemented with IBA (indolbutyric acid) (0, 2 or 4 µM) was used, associated or not with 0.15% activated carbon. The rooted seedlings were acclimatized ex vitro. The highest percentage of germination (78.57%) was observed in seeds treated with 6% NaClO for 10 minutes, without fungicide in the culture medium. The 0.2% concentration of PPM provided the highest percentage of nodal segment survival (70%). The succession of subcultures significantly increases the rate of shoot induction and the highest number of shoots per explant (3.28 ± 1.8) occurred at a concentration of 2 µM mT. The formation of the largest number of roots was observed in the absence of activated carbon without the need for exogenous auxin and in acclimatization, there was a high percentage of seedling survival. In this way, it was possible to obtain a viable micropropagation protocol, constituting a promising methodology in the production of seedlings.

Downloads

Download data is not yet available.

Author Biographies

Odirlei Orlindo Hass, Universidade Regional de Blumenau, Blumenau, SC

Engenheiro Florestal, Me., Programa de Pós-Graduação em Engenharia Florestal, Universidade Regional de Blumenau, Pesquisador Autônomo, Rua São Paulo, 3.250, Itoupava Seca, CEP 89030-000, Blumenau (SC), Brasil.

Thiago Sanches Ornellas, Universidade Federal de Santa Catarina, Florianópolis, SC

Engenheiro Agrônomo, Dr., Programa de Pós-Graduação em Recursos Genéticos Vegetais, Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, CEP 88034-000, Florianópolis (SC), Brasil.

Ricardo Bittencourt, Universidade Regional de Blumenau, Blumenau, SC

Engenheiro Agrônomo, Dr., Professor, Programa de Pós-Graduação em Engenharia Florestal, Universidade Regional de Blumenau, Departamento de Ciências Naturais, Rua Antônio da Veiga, 140, Itoupava Seca, CEP 89030-903, Blumenau (SC), Brasil.

References

AMOO, S. O.; FINNIE, J. F.; VAN STADEN, J. The role of meta-topolins in alleviating micropropagation problems. Plant Growth Regulation, [s. l.], v. 63, n. 2, p. 197-206, 2011.

BENTES-GAMA, M. D. M. et al. Espécies arbóreas nativas com potencial para recuperação de paisagens alteradas em Rondônia. [S. l.]: Embrapa Rondônia, 2008. (Documentos).

CAMPOS, V. C. A. et al. Micropropagation of umburana de cheiro. Ciência Rural, Santa Maria, v. 43, n. 4, p. 639-644, 2013.

CARVALHO, P. E. R. Sobrasil. Colombo: Embrapa, 2005.

COLOMBARI, L. F. et al. Efeito fisiológico de fungicidas sistêmicos em parâmetros agronômicos da cenoura. Revista de Ciências Agrárias, Lisboa, v. 38, n. 3, p. 366-371, 2015.

CORADIN, L.; SIMINSKI, A.; REIS, A. Espécies nativas da flora brasileira de valor econômico atual ou potencial. Brasília: Ministério do Meio Ambiente, 2011. p. 448-452.

COSTA, F. H. S. et al. Perda de água e modificações anatômicas em folhas de plantas de bananeiras micropropagadas durante a aclimatização. Ciência Rural, Santa Maria, v. 39, n. 3, p. 742-748, 2009.

DIAS, P. C. et al. Estaquia e miniestaquia de espécies florestais lenhosas do Brasil. Pesquisa Florestal Brasileira, Colombo, v. 32, n. 72, p. 453, 2012.

ERIG, A. C.; SCHUCH, M. W.; BRAGA, E. J. B. In vitro rooting of pear tree (Pyrus communis L.) cv. Carrick. Ciência Rural, Santa Maria, v. 34, n. 1, p. 275-277, 2004.

FARZANA, A. F. R. et al. In vitro regeneration of shoots from Garcinia quaesita leaf explants. Journal of the National Science Foundation of Sri Lanka, [s. l.], v. 38, n. 3, 2010.

GENTILE, A. et al. Effect of meta-Topolin on micropropagation and adventitious shoot regeneration in Prunus rootstocks. Plant Cell, Tissue and Organ Culture, [s. l.], v. 118, n. 3, p. 373-381, 2014.

ISHIBASHI, V. et al. Estabelecimento in vitro de Acacia mearnsii De Wild. (Fabaceae). Plant Cell Culture & Micropropagation, Lavras, v. 13, n. 1, p. 15-21, 2017.

KAMÍNEK, M.; MOTYKA, V.; VAŇKOVÁ, R. Regulation of cytokinin content in plant cells. Physiologia Plantarum, Kopenhagen, v. 101, n. 4, p. 689-700, 1997.

KANEKO, Y.; MOROHASHI, Y. The effect of sodium hypochlorite treatment on the development of α-amylase activity in mung bean cotyledons. Plant Science, [s. l.], v. 164, n. 2, p. 287-292, 2003.

LIANG, J. et al. Positive biodiversity-productivity relationship predominant in global forests. Science, [s. l.], v. 354, n. 6309, out. 2016.

LLOYD, G.; MCCOWN, B. H. Commercially feasible micropropagation of mountain laurel (Kalmia latifolia) by use of shoot tip culture. International Plant Propagators Society, [s. l.], v. 30, p. 421-427, 1980.

MAGYAR-TÁBORI, K. et al. The role of cytokinins in shoot organogenesis in apple. Plant Cell, Tissue and Organ Culture, [s. l.], v. 101, n. 3, p. 251-267, 2010.

MELO JUNIOR, J. L. D. A. et al. Germination and morphology of seeds and seedlings of Colubrina glandulosa Perkins after overcoming dormancy. Australian Journal of Crop Science, [s. l.], v. 12, n. 4, p. 639, 2018.

MIYAZAKI, J. et al. Bacterial endophyte in Macropidia fuliginosa: its localisation and eradication from in vitro cultured basal-stem callus. Australian Journal of Botany, Melbourne, v. 59, n. 4, p. 363-368, 2011.

MURASHIGE, T.; SKOOG, F. A. Revised method for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum, Kopenhagen, v. 15, n. 3, p. 473-497, 1962.

NAAZ, A. et al. Meta-topolin improved micropropagation in Syzygium cumini and acclimatization to ex vitro conditions. Biologia Plantarum, Praha, v. 63, n. 1, p. 174-182, 2019.

NIEDZ, R. P. Using isothiazolone biocides to control microbial and fungal contaminants in plant tissue cultures. Hort Technology, [s. l.], v. 8, n. 4, p. 598-601, 1998.

OLIVEIRA, L. S.; DIAS, P. C.; BRONDANI, G. E. Micropropagação de espécies florestais brasileiras. Pesquisa Florestal Brasileira, Colombo, v. 33, n. 76, p. 439-453, 2013.

PÉREZ FLORES, J.; AGUILAR VEGA, M. E.; ROCA TRIPEPI, R. Ensaios para o estabelecimento in vitro de Swietenia macrophylla e Cedrela odorata. Revista Colombiana de Biotecnología, [s. l.], v. 14, n. 1, p. 20-30, 2012.

PIJUT, P. M. et al. In vitro propagation of tropical hardwood trees species – a review (2001-2011). Propagation of Ornamental Plants, [s. l.], v. 12, n. 1, p. 25-51, 2012.

RIBAS, L. L. F. et al. Micropropagation of Aspidosperma polyneuron Müll. Arg. From in vitro germinated seedlings. Ciência Florestal, Santa Maria, v. 27, n. 2, p. 391-402, 2017.

ROLIM, S. G.; PIOTTO, D. Silvicultura e tecnologia de espécies da Mata Atlântica. Belo Horizonte: Rona, 2018. 160 p.

RSTUDIO TEAM. RStudio: Integrated Development for R. RStudio, Inc. Boston, 2019. Disponível em: http://www.rstudio.com. Acesso em: 1 out. 2019.

SILVA, K. D. A. et al. Semeadura direta com transposição de serapilheira como metodologia de restauração ecológica1. Revista Árvore, Viçosa, MG, v. 39, n. 5, p. 811-820, 2015.

SILVA, P. R. D. et al. A regenerative route for Eugenia uniflora L. (Myrtaceae) through in vitro germination and micropropagation. Annals of Forest Research, [s. l.], v. 57. n. 1, p. 39-45, 2014.

SILVEIRA, S. S. et al. Micropropagation of Calophyllum brasiliense (Cambess.) from nodal segments. Brazilian Journal of Biology, São Carlos, v. 76, n. 3, p. 656-663, 2016.

Published

2022-03-25

How to Cite

Hass, O. O., Ornellas, T. S., & Bittencourt, R. (2022). In vitro propagation of <i>Colubrina glandulosa</i> Perkins: a potential native species for reforestation programs. Ciência Florestal, 32(1), 287–308. https://doi.org/10.5902/1980509853294

Issue

Section

Articles

Most read articles by the same author(s)