In vitro propagation of <i>Colubrina glandulosa</i> Perkins: a potential native species for reforestation programs

Authors

DOI:

https://doi.org/10.5902/1980509853294

Keywords:

Sobraji, Micropropagation, Meta-topoline, PPM™

Abstract

Colubrina glandulosa (sobraji) is a fast-growing timber species with a straight trunk, with the potential to form homogeneous reforestation, either by itself or associated with other species. In the view of this, we sought to establish a micropropagation protocol, using seeds and nodal segments, aiming at the production of seedlings on a commercial scale. The seeds were disinfected in NaClO 6% for 10, 20 or 30 minutes and sown in MS culture medium supplemented, or not, with 0.5 mL L-1 of Comet®. The nodal segments were disinfected in 2% NaClO and 5% PPM solution, introduced in WPM culture medium, supplemented with PPM (0; 0.2 or 0.4%) and 0.5 mL L-1 of Comet® associated with 0.75 g L-1 of sodium ampicillin or 2 mL L-1 Kasumin®. In multiplication, nodal segments were grown in WPM culture medium supplemented with BAP (6-benzylaminopurine) or mT (meta-topoline) (2; 4; 8 or 12 µM), combined with the presence or absence of ANA (naphthalenoacetic acid) (2 µM) in three subcultures. For rooting, the WPM/2 culture medium supplemented with IBA (indolbutyric acid) (0, 2 or 4 µM) was used, associated or not with 0.15% activated carbon. The rooted seedlings were acclimatized ex vitro. The highest percentage of germination (78.57%) was observed in seeds treated with 6% NaClO for 10 minutes, without fungicide in the culture medium. The 0.2% concentration of PPM provided the highest percentage of nodal segment survival (70%). The succession of subcultures significantly increases the rate of shoot induction and the highest number of shoots per explant (3.28 ± 1.8) occurred at a concentration of 2 µM mT. The formation of the largest number of roots was observed in the absence of activated carbon without the need for exogenous auxin and in acclimatization, there was a high percentage of seedling survival. In this way, it was possible to obtain a viable micropropagation protocol, constituting a promising methodology in the production of seedlings.

Downloads

Author Biographies

Odirlei Orlindo Hass, Universidade Regional de Blumenau, Blumenau, SC

Engenheiro Florestal, Me., Programa de Pós-Graduação em Engenharia Florestal, Universidade Regional de Blumenau, Pesquisador Autônomo, Rua São Paulo, 3.250, Itoupava Seca, CEP 89030-000, Blumenau (SC), Brasil.

Thiago Sanches Ornellas, Universidade Federal de Santa Catarina, Florianópolis, SC

Engenheiro Agrônomo, Dr., Programa de Pós-Graduação em Recursos Genéticos Vegetais, Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, CEP 88034-000, Florianópolis (SC), Brasil.

Ricardo Bittencourt, Universidade Regional de Blumenau, Blumenau, SC

Engenheiro Agrônomo, Dr., Professor, Programa de Pós-Graduação em Engenharia Florestal, Universidade Regional de Blumenau, Departamento de Ciências Naturais, Rua Antônio da Veiga, 140, Itoupava Seca, CEP 89030-903, Blumenau (SC), Brasil.

References

AMOO, S. O.; FINNIE, J. F.; VAN STADEN, J. The role of meta-topolins in alleviating micropropagation problems. Plant Growth Regulation, [s. l.], v. 63, n. 2, p. 197-206, 2011.

BENTES-GAMA, M. D. M. et al. Espécies arbóreas nativas com potencial para recuperação de paisagens alteradas em Rondônia. [S. l.]: Embrapa Rondônia, 2008. (Documentos).

CAMPOS, V. C. A. et al. Micropropagation of umburana de cheiro. Ciência Rural, Santa Maria, v. 43, n. 4, p. 639-644, 2013.

CARVALHO, P. E. R. Sobrasil. Colombo: Embrapa, 2005.

COLOMBARI, L. F. et al. Efeito fisiológico de fungicidas sistêmicos em parâmetros agronômicos da cenoura. Revista de Ciências Agrárias, Lisboa, v. 38, n. 3, p. 366-371, 2015.

CORADIN, L.; SIMINSKI, A.; REIS, A. Espécies nativas da flora brasileira de valor econômico atual ou potencial. Brasília: Ministério do Meio Ambiente, 2011. p. 448-452.

COSTA, F. H. S. et al. Perda de água e modificações anatômicas em folhas de plantas de bananeiras micropropagadas durante a aclimatização. Ciência Rural, Santa Maria, v. 39, n. 3, p. 742-748, 2009.

DIAS, P. C. et al. Estaquia e miniestaquia de espécies florestais lenhosas do Brasil. Pesquisa Florestal Brasileira, Colombo, v. 32, n. 72, p. 453, 2012.

ERIG, A. C.; SCHUCH, M. W.; BRAGA, E. J. B. In vitro rooting of pear tree (Pyrus communis L.) cv. Carrick. Ciência Rural, Santa Maria, v. 34, n. 1, p. 275-277, 2004.

FARZANA, A. F. R. et al. In vitro regeneration of shoots from Garcinia quaesita leaf explants. Journal of the National Science Foundation of Sri Lanka, [s. l.], v. 38, n. 3, 2010.

GENTILE, A. et al. Effect of meta-Topolin on micropropagation and adventitious shoot regeneration in Prunus rootstocks. Plant Cell, Tissue and Organ Culture, [s. l.], v. 118, n. 3, p. 373-381, 2014.

ISHIBASHI, V. et al. Estabelecimento in vitro de Acacia mearnsii De Wild. (Fabaceae). Plant Cell Culture & Micropropagation, Lavras, v. 13, n. 1, p. 15-21, 2017.

KAMÍNEK, M.; MOTYKA, V.; VAŇKOVÁ, R. Regulation of cytokinin content in plant cells. Physiologia Plantarum, Kopenhagen, v. 101, n. 4, p. 689-700, 1997.

KANEKO, Y.; MOROHASHI, Y. The effect of sodium hypochlorite treatment on the development of α-amylase activity in mung bean cotyledons. Plant Science, [s. l.], v. 164, n. 2, p. 287-292, 2003.

LIANG, J. et al. Positive biodiversity-productivity relationship predominant in global forests. Science, [s. l.], v. 354, n. 6309, out. 2016.

LLOYD, G.; MCCOWN, B. H. Commercially feasible micropropagation of mountain laurel (Kalmia latifolia) by use of shoot tip culture. International Plant Propagators Society, [s. l.], v. 30, p. 421-427, 1980.

MAGYAR-TÁBORI, K. et al. The role of cytokinins in shoot organogenesis in apple. Plant Cell, Tissue and Organ Culture, [s. l.], v. 101, n. 3, p. 251-267, 2010.

MELO JUNIOR, J. L. D. A. et al. Germination and morphology of seeds and seedlings of Colubrina glandulosa Perkins after overcoming dormancy. Australian Journal of Crop Science, [s. l.], v. 12, n. 4, p. 639, 2018.

MIYAZAKI, J. et al. Bacterial endophyte in Macropidia fuliginosa: its localisation and eradication from in vitro cultured basal-stem callus. Australian Journal of Botany, Melbourne, v. 59, n. 4, p. 363-368, 2011.

MURASHIGE, T.; SKOOG, F. A. Revised method for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum, Kopenhagen, v. 15, n. 3, p. 473-497, 1962.

NAAZ, A. et al. Meta-topolin improved micropropagation in Syzygium cumini and acclimatization to ex vitro conditions. Biologia Plantarum, Praha, v. 63, n. 1, p. 174-182, 2019.

NIEDZ, R. P. Using isothiazolone biocides to control microbial and fungal contaminants in plant tissue cultures. Hort Technology, [s. l.], v. 8, n. 4, p. 598-601, 1998.

OLIVEIRA, L. S.; DIAS, P. C.; BRONDANI, G. E. Micropropagação de espécies florestais brasileiras. Pesquisa Florestal Brasileira, Colombo, v. 33, n. 76, p. 439-453, 2013.

PÉREZ FLORES, J.; AGUILAR VEGA, M. E.; ROCA TRIPEPI, R. Ensaios para o estabelecimento in vitro de Swietenia macrophylla e Cedrela odorata. Revista Colombiana de Biotecnología, [s. l.], v. 14, n. 1, p. 20-30, 2012.

PIJUT, P. M. et al. In vitro propagation of tropical hardwood trees species – a review (2001-2011). Propagation of Ornamental Plants, [s. l.], v. 12, n. 1, p. 25-51, 2012.

RIBAS, L. L. F. et al. Micropropagation of Aspidosperma polyneuron Müll. Arg. From in vitro germinated seedlings. Ciência Florestal, Santa Maria, v. 27, n. 2, p. 391-402, 2017.

ROLIM, S. G.; PIOTTO, D. Silvicultura e tecnologia de espécies da Mata Atlântica. Belo Horizonte: Rona, 2018. 160 p.

RSTUDIO TEAM. RStudio: Integrated Development for R. RStudio, Inc. Boston, 2019. Disponível em: http://www.rstudio.com. Acesso em: 1 out. 2019.

SILVA, K. D. A. et al. Semeadura direta com transposição de serapilheira como metodologia de restauração ecológica1. Revista Árvore, Viçosa, MG, v. 39, n. 5, p. 811-820, 2015.

SILVA, P. R. D. et al. A regenerative route for Eugenia uniflora L. (Myrtaceae) through in vitro germination and micropropagation. Annals of Forest Research, [s. l.], v. 57. n. 1, p. 39-45, 2014.

SILVEIRA, S. S. et al. Micropropagation of Calophyllum brasiliense (Cambess.) from nodal segments. Brazilian Journal of Biology, São Carlos, v. 76, n. 3, p. 656-663, 2016.

Published

2022-03-25

How to Cite

Hass, O. O., Ornellas, T. S., & Bittencourt, R. (2022). In vitro propagation of <i>Colubrina glandulosa</i> Perkins: a potential native species for reforestation programs. Ciência Florestal, 32(1), 287–308. https://doi.org/10.5902/1980509853294

Issue

Section

Articles

Most read articles by the same author(s)