Comparison of the quality of buriti (<i>Mauritia flexuosa</i> L. f.) petiole tissues for combustion and carbonization

Authors

DOI:

https://doi.org/10.5902/1980509839653

Keywords:

Heating value, Energy density, Thermal degradation

Abstract

Despite its social, cultural and economic importance for the Amazon region, the energy potential of Mauritia flexuosa, popularly known as buriti, has not yet been explored in order to expand the possible uses of this species by the local communities. Therefore, the aim of this work was to compare the tissues that comprise the petiole of Mauritia flexuosa for combustion and carbonization. The petiole core and bark were separated and characterized by chemical composition (total and water-soluble extractives, lignin, and ashes), moisture content (based humid mass), proximate composition (contents of volatile matter, fixed carbon, and ash), basic density, higher heating value, and thermogravimetric analysis in N2 inert atmosphere. The two tissues from the Mauritia flexuosa petiole presented advantages for bioenergetic purposes, such as low ash content (≤ 2%) and higher heating value (≈ 18 MJ kg-1), in addition to suitable fixed carbon (≈ 18%). For the core and husk, the lignin contents (19 and 28%, respectively), extractives contents (9 and 5%, respectively), and basic density (0.041 and 0.267 g cm-3, respectively) significantly differed. However, the proximate composition of the tissues was not influenced by such differences, unlike the higher heating value and energy density. The thermogravimetric behavior showed higher degradation ratio and lower final mass yield (7%) for the core in comparison to the husk. The husk showed better quality for combustion and carbonization in comparison to the core. This is an advantageous result for the extractive activities of Amazonian communities because the husk is a waste from the petiole processing in order to obtain the core for handcraft. Due to the low basic density, the core can be noted for its use in torrefaction, densification, pyrolysis for the production of bio-oil and production of natural filters and activated charcoals, rather than direct combustion and carbonization.

Downloads

Download data is not yet available.

Author Biographies

Lyssa Martins de Souza, Universidade Federal Rural da Amazônia, Belém, PA

Engenheira Florestal, Mestre em Ciências Florestais pela Universidade Federal Rural da Amazônia, doutoranda em Agronomia pela Universidade Federal Rural da Amazônia

Jefferson Bezerra Bezerra, Universidade Federal do Amapá, Macapá, AP

Engenheiro Ambiental, Mestre em Ciências Ambientais pela Universidade Federal do Amapá

Wiully Luan Valverde de Queiroz, Secretaria de Estado de Meio Ambiente e Sustentabilidade, Belém, PA

Engenheiro Florestal, Mestre em Ciências Florestal, Servidor público estadual do Secretaria de Estado de Meio Ambiente e Sustentabilidade do Pará.

Paulo Fernando Trugilho, Universidade Federal de Lavras, Lavras, MG

Engenheiro Florestal, Dr., Professor titular do Departamento de Ciências Florestais, Universidade Federal de Lavras.

Thiago de Paula Protásio, Universidade Federal Rural da Amazônia, Parauapebas, PA

Engenheiro Florestal,  Dr., Professor adjunto do Colegiado de Ciências Florestais, Universidade Federal Rural da Amazônia,

Tiago Marcolino de Souza, Universidade do Estado do Amapá, Macapá, AP

Físico, Dr., Professor adjunto do Colegiado de Engenharia Química, Universidade do Estado do Amapá,

Lina Bufalino, Universidade Federal Rural da Amazônia, Belém, PA

Engenheira Florestal, Dra., Professora adjunta do Instituto de Ciências Agrárias, Universidade Federal Rural da Amazônia

References

AKDENIZ, F. et al. Application of real valued genetic algorithm on prediction of higher heating values of various lignocellulosic materials using lignin and extractive contents. Energy, Oxford, v. 160, p. 1047-1054, 2018.

ALVAREZ, V. A.; VÁZQUEZ, A. Thermal degradation of cellulose derivatives/starch blends and sisal fibre biocomposites. Polymer Degradation and Stability, [s. l.], v. 84, n. 1, p. 13-21, 2004.

AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D1762 - 84: Standard test method for chemical analysis of wood charcoal. West Conshohocken, 2013.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. MB 1269: madeira – determinação da densidade básica. Rio de Janeiro, 2003.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7989: pasta celulósica e madeira - determinação de lignina insolúvel em ácido. Rio de Janeiro, 2010a.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 13999: papel, cartão, pastas celulósicas e madeira — determinação do resíduo (cinza) após a incineração a 525°C. Rio de Janeiro, 2017.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 14577: determinação do material solúvel em etanol-tolueno e em diclorometano e em acetona. Rio de Janeiro, 2010b.

BUFALINO, L. et al. Local variability of yield and physical properties of açaí waste and improvement of its energetic attributes by separation of lignocellulosic fibers and seeds. Journal of Renewable and Sustainable Energy, Oxford, v. 10, n. 5, p. 053102, 2018.

CATTANI, I. M.; BARUQUE-RAMOS, J. Brazilian Buriti Palm Fiber (Mauritia flexuosa Mart.). In: FANGUEIRO, R.; RANA, S. (ed.). Natural Fibres: advances in science and technology towards industrial applications. Dordrecht: [s. n.], 2016. p. 89-98.

COMPANHIA NACIONAL DE ABASTECIMENTO. Boletim da Sociobiodiversidade, Brasília, v. 3, n. 2, p. 1-56, 2019.

DIAS JUNIOR, A. F. et al. Thermal profile of wood species from the Brazilian semi-arid region submitted to pyrolysis. Cerne, Lavras, v. 25, n. 1, p. 44-53, 2019.

ESTIATI, I. et al. Fitting performance of artificial neural networks and empirical correlations to estimate higher heating values of biomass. Fuel, Guildford, v. 180, p. 377-383, 2016.

EUROPEAN COMMITTEE FOR STANDARDIZATION. EN ISO 18125: Solid biofuels – determination of calorific value. Genebra, 2017.

GAN, M. et al. Reduction of pollutant emission in iron ore sintering process by applying biomass fuels. ISIJ International, [s. l.], v. 52, n. 9, p. 1574-1578, 2012.

GARCÍA, R. et al. Biomass proximate analysis using thermogravimetry. Bioresource Technology, Essex, v. 139, p. 1-4, 2013.

GARCÍA, R. et al. Characterization of Spanish biomass wastes for energy use. Bioresource Technology, Essex, v. 103, p. 249-258, 2012.

GHEORGHE, D.; NEACSU, A. Heat of some plant biomass species for biofuels production. Revue Roumaine de Chimie, Bucharest, v. 64, n. 7, p. 633-6639, 2019.

GOULART, S. L. et al. Análises químicas e densidade básica da madeira de raiz, fuste e galho de barbatimão (Stryphnodendron adstringens Coville) de bioma cerrado. Cerne, Lavras, v. 18, n. 1, p. 59-66, 2012.

GRUSAK, M. A.; LUCAS, W. J. Recovery of cold-inhibited phloem translocation in sugar beet. Journal of Experimental Botany, Lancaster, v. 35, n. 152, p. 389-402, 1984.

HOLM, J. A.; MILLER, C. J.; CROPPER, W. P. Population dynamics of the dioecious Amazonian palm Mauritia flexuosa: simulation analysis of sustainable harvesting. Biotropica, [s. l.], v. 40, n. 5, p. 550-558, 2008.

INDRAWAN, N. et al. Engine power generation and emission performance of syngas generated from low-density biomass. Energy Conversion and Management, [s. l.], v. 148, p. 593-603, 2017.

IBGE. Produção da extração vegetal e silvicultura 2018. Rio de Janeiro, 2019.

KAMBLE, A. K. et al. Co-gasification of coal and biomass an emerging clean energy technology: status and prospects of development in Indian context. International Journal of Mining Science and Technology, [s. l.], v. 29, n. 2, p. 171-186, 2019.

KIM, D.; LEE, K.; PARK, K. Y. Upgrading the characteristics of biochar from cellulose, lignin, and xylan for solid biofuel production from biomass by hydrothermal carbonization. Journal of industrial and Engineering Chemistry, [s. l.], v. 42, p. 95-100, 2016.

LORENZI, H. et al. Flora Brasileira: Arecaceae (Palmeiras). Nova Odessa: Instituto Platorum P.S., 2010. 368 p.

LIU, Y. et al. Novel fluidized bed dryer for biomass drying. Fuel Processing Technology, [s. l.], v. 122, p. 170-175, 2014.

MAKSIMUK, Y. et al. Prediction of higher heating value based on elemental composition for lignin and other fuels. Fuel, Guildford, v. 263, p. 116727, 2020.

MEI, Y. et al. Torrefaction of cedar wood in a pilot scale rotary kiln and the influence of industrial flue gas. Bioresource Technology, Essex, v. 177, p. 355-360, 2015.

MELO, D. de Q. et al. Biosorption of metal ions using a low cost modified adsorbent (Mauritia flexuosa): experimental design and mathematical modeling. Environmental Technology, [s. l.], v. 37, n. 17, p. 2157-2171, 2016.

MOTTIN, A. C. et al. What changes in poly (3-hydroxybutyrate) (PHB) when processed as electrospun nanofibers or thermo-compression molded film? Materials Research, São Carlos, v. 19, n. 1, p. 57-66, 2016.

MOULIN, J. C. et al. Effect of extractives and carbonization temperature on energy characteristics of wood waste in amazon rainforest. Cerne, Lavras, v. 23, n. 2, p. 209-218, 2017.

NASSER, R. A. et al. Chemical analysis of different parts of date palm (Phoenix dactylifera L.) using ultimate, proximate and thermo-gravimetric techniques for energy production. Energies, [s. l.], v. 9, n. 374, p. 1-14, 2016.

NIKLAS, K. J. Research review: A mechanical perspective on foliage leaf form and function. New Phytologist, [s. l.], v. 143, n. 1, p. 19-31, 1999.

ORISALEYE, J. I. et al. Effect of densification variables on density of corn cob briquettes produced using a uniaxial compaction biomass briquetting press. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, [s. l.], v. 40, n. 24, p. 3019-3028, 2018.

PEREIRA, B. L. C. et al. Estudo da degradação térmica da madeira de Eucalyptus através de termogravimetria e calorimetria. Revista Árvore, Viçosa, MG, v. 37, n. 3, 2013.

PROTÁSIO, T. D. P. et al. Thermal decomposition of torrefied and carbonized briquettes of residues from coffee grain processing. Ciência e Agrotecnologia, Lavras, v. 37, n. 3, p. 221-228, 2013a.

PROTÁSIO, T. P. et al. Assessing proximate composition, extractive concentration, and lignin quality to determine appropriate parameters for selection of superior Eucalyptus firewood. BioEnergy Research, [s. l.], v. 12, p. 626-641, 2019.

PROTÁSIO, T. P. et al. Brazilian lignocellulosic wastes for bioenergy production: characterization and comparison with fossil fuels. BioResources, [s. l.], v. 8, n. 1, p. 1166-1185, 2013b.

SAMPAIO, M. B.; SCHMIDT, I. B.; FIGUEIREDO, I. B. Harvesting effects and population ecology of the buriti palm (Mauritia flexuosa L. f., Arecaceae) in the Jalapão region, Central Brazil. Economic Botany, [s. l.], v. 62, n. 2, p. 172-181, 2008.

SANDER, N. L. et al. Rivers shape population genetic structure in Mauritia flexuosa (Arecaceae). Ecologyand Evolution, [s. l.], v. 8, n. 13, p. 6589-6598, 2018.

SARTO, C.; SANSIGOLO, C. A. Cinética da remoção dos extrativos da madeira de Eucalyptus grandis durante polpação Kraft. Acta Scientiarum Technology, Maringá, v. 32, n. 3, p. 227-235, 2010.

SHARMA, A. et al. Process modelling of biomass conversion to biofuels with combined heat and power. Bioresource Technology, Essex, v. 198, p. 309-315, 2015.

SILVA, C. J.; VALE, A. T.; MIGUEL, E. P. Densidade básica da madeira de espécies arbóreas de Cerradão no estado de Tocantins. Pesquisa Florestal Brasileira, [s. l.], v. 35, n. 82, p. 63-75, 2015.

SILVA, S. B. et al. Influence of physical and chemical compositions on the properties and energy use of lignocellulosic biomass pellets in Brazil. Renewable Energy, [s. l.], v. 147, p. 1870-1879, 2020.

SOUSA, S. A. V. de et al. Design and characterization of biocomposites from poly (lactic acid) (PLA) and buriti petiole (Mauritia flexuosa). Journal Renewable Materials, [s. l.], v. 5, n. 3-4, p. 251-257, 2017.

STEEGE, H. et al. Hyperdominance in the Amazonian tree flora. Science, London, v. 342, p. 325-336, 2013.

TANG, W. et al.Natural biomass-derived carbons for electrochemical energy storage. Materials Research Bulletin, [s. l.], v. 88, p. 234-241, 2017.

VALE A. T.; BRASIL, M. A. P.; LEÃO, A. L. Quantificação e caracterização energética da madeira e casca de espécies do cerrado. Ciência Florestal, Santa Maria, v. 12, n. 1, p 71-80, 2002.

VIANA, R. V. R. et al. Engaging plant anatomy and local knowledge on the buriti palm (Mauritia flexuosa L. f.: Arecaceae): the microscopic world meets the golden grass artisan’s perspective. Cultural Studies of Science Education, [s. l.], v. 13, n. 1, p. 253-265, 2018.

WANG, S. et al. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Progress in Energy and Combustion Science, [s. l.], v. 62, p. 33-86, 2017.

Published

2020-06-04

How to Cite

Souza, L. M. de, Bezerra, J. B., Queiroz, W. L. V. de, Trugilho, P. F., Protásio, T. de P., Souza, T. M. de, & Bufalino, L. (2020). Comparison of the quality of buriti (<i>Mauritia flexuosa</i> L. f.) petiole tissues for combustion and carbonization. Ciência Florestal, 30(2), 516–531. https://doi.org/10.5902/1980509839653

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>