THE ENERGETIC POTENTIAL OF FOREST FUELS IN Pinus elliottii STANDS IN SOUTHERN BRAZIL

Authors

  • Aires Afonso Mbanze
  • Dimas Agostinho da Silva
  • Alexandre França Tetto
  • José Fernando Pereira
  • Antonio Carlos Batista

DOI:

https://doi.org/10.5902/1980509835314

Keywords:

biomass energy, forestry fuels, year’s season.

Abstract

In order to determine the potential energy of forest fuels in Pinus elliottii stands, we investigated the best season to collect fuel material considering fuel availability, moisture content, Higher Calorific Value (HCV) and immediate chemical composition, from the plots established and monitored during one year at Rio Negro Research station, Paraná state, Brazil. The year’s seasons (winter, summer, spring and autumn) were considered as experimental blocks while the diameter of the materials (AA, AB and AC) as treatments. These treatments were pre-defined in the following diameter classes: AA, in the upper layer; AB, in the intermediate layer; AC, in the lower layer, all materials up to 0,7 cm; and B, with material of 0.71 to 2.5 cm. The fuel material of all year’s seasons was collected in sub plots of 900 cm2 , weighted in the field and taken to the laboratory of the Federal University of Paraná (UFPR) to carry out the rest of analyzes including: moisture on the dry basis, fuel availability, Higher Calorific Value (HCV) and immediate chemical composition. Analyses of variance (ANOVA) and Tukey test were performed to compare the differences between seasons and material classes. Together with low moisture content and greater fuel availability, the mean test showed that, for all material classes, the winter was the best season to collect forest fuel material of Pinus elliottii stands. The results also showed that, for immediate composition and HCV, the mean class AA and B were statistically superior than the other classes. The fuel loading had a considerable density of energetic (12,275.42.105 kcal. ha-1) for bioenergy conversion and utilization.

Downloads

Download data is not yet available.

References

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 8112: análise imediata. Rio de Janeiro, 1986a.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 8293: determinação de umidade. Rio de Janeiro, 1986b.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 8633: determinação do poder calorífico superior. Rio de Janeiro, 1984.

AL-HAMAMRE, Z. et al. Wastes and biomass materials as sustainable-renewable energy resources for Jordan. Renewable and Sustainable Energy Reviews, [S.l.], v. 67, p. 295-314, 2017.

BATISTA, A. C. Avaliação da queima controlada em povoamentos de Pinus taeda L. no norte do Paraná. Curitiba. 1995. 108 f. Tese (Doutorado em Engenharia Florestal) - Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, 1995.

BEUTLING, A. Combustíveis florestais. In: SOARES, R. V.; BATISTA, C. A.; NUNES, J. R. S. Incêndios florestais no Brasil: o estado da arte. Curitiba: [s. n.], 2009. p. 21-34.

BRAND, M. A. et al. Storage as a tool to improve wood fuel quality. Biomass and Bioenergy, Oxford, n. 35, p. 2583-2588, 2011.

BRASIL. Ministério de Minas e Energia. Plano nacional de energia 2030. Brasília: MME, 2007. Disponível em: <http://www.epe.gov.br/PNE/20080512_8.pdf>. Acesso em: 3 maio 2013.

BROWN, J. K.; OBERHEU, R. D.; JOHNSTON, C. M. Handbook for inventorying surface fuels and biomass in the Interior West. Ogden: Intermountain Forest and Range Experiment Station, 1982. 48 p.

CHOI, S.; CHAMG, Y.; PARK, B. Increase in carbon emissions from forest after intensive reforestation and management programs. Science of the Environment, [S.l.], v. 371, p. 225-235, 2006.

CORTEZ, L. A. B.; LORA, E. S.; GÓMEZ, E. O. Biomassa para energia. Campinas: Unicamp, 2008. 733 p.

ENERGY INFORMATION ADMINISTRATION. Annual energy outlook 2013 with projections to 2040. Washington: EIA, 2013. Disponível em: <http://www.eia.gov/forecasts/aeo/>. Acesso em: 08 jul. 2013.

ENERGY INFORMATION ADMINISTRATION. International Energy Outlook 2017. Washington: EIA, 2017. Disponível em: <https://www.eia.gov/outlooks/ieo/pdf/0484(2017).pdf>. Acesso em: 16 out. 2017.

EROL, M.; HAYKIRI-ACMA, H.; KÜÇÜKBAYRAK, S. S. Calorific value estimation of biomass from their proximate analyses data. Renewable Energy, Oxford, v. 35, n. 1, p. 170-173, 2010.

FULLER, M. Forest fires: an introduction to wildland fire behavior, management, firefighting, and prevention. New York: J. Wiley &Sons, 1991.

GONZÁLEZ, J. F. et al. Use of almond residues for domestic heating. Study of the combustion parameters in a mural boiler. Fuel Processing Technology, Amsterdam, v. 86, p. 1351-1368, 2005.

HEIKKILÄ, T. V.; GRÖNQVIST, R.; JURVÉLIUS, M. Wildland fire management: handbook for trainers. Helsinki: Ministry for Foreign Affairs of Finland; Development Policy Information Unit, 2007. 248 p.

INDÚSTRIA BRASILEIRA DE ÁRVORES. Relatório Anual Indústria Brasileira de Árvores 2016. Brasília: IBÁ, 2016. Disponível em: <http://iba.org/images/shared/Biblioteca/IBA_RelatorioAnual2016_.pdf>. Acesso em: 16 out. 2017.

INTERNATIONAL RENEWABLE ENERGY AGENCY. REthinking Energy 2017. Abu Dhabi: IRENA, 2017. Disponível em: <https://www.irena.org/DocumentDownloads/Publications/IRENA_REthinking_Energy_2017.pdf>. Acesso em: 16 out. 2017.

JENKINS, B. M. Fuel properties for biomassa materials. In: INTERNATIONAL SYMPOSIUM ON APPLICATION AN MANAGEMENT OF ENERGY IN AGRICULTURE: THE ROLE BIOMASS FUELS, 1990, New Delhi. Proceedings... Ludhiana: Punjab Agricultural University, 1990. p. 21-23.

MAACK, R. Geografia física do estado do Paraná. 3. ed. Curitiba: Imprensa Oficial, 2002. 440 p.

MENEZES, C. E. et al. Aporte e decomposição de serapilheira e produção de biomassa radicular em florestas com diferentes estágios sucessionais em Pinheiral, RJ. Ciência Florestal, Santa Maria, v. 20, n. 3, p. 439-452, jul./set. 2010.

MUNALULA, F.; MEINCKEN, M. An evaluation of South African fuelwood with regards to calorific value and environmental impact. Biomass and Bioenergy, Oxford, v. 33, n. 3, p. 415-420, 2009.

NOGUEIRA, L. A. H. et al. Drendroenergia: fundamentos e aplicações. Rio de Janeiro: [s. n.], 2000. 144 p.

NOGUEIRA, L. A. H.; LORA, E. E. Wood energy: principles and applications. Itajubá: Núcleo de excelência de geração termoelétrica distribuída, 2002. Disponível em: <http://www.nest.unifei.edu.br/english/pags/downloads/files>. Acesso em: 25 ago. 2013.

ÖZYUǦURAN, A.; YAMAN, S. Prediction of calorific value of biomass from proximate analysis. Energy Procedia, [S.l.], v. 107, p. 130-136, 2017.

PAHLA, G. et al. Energy densification of animal waste lignocellulose biomass and raw biomass. South African Journal of Chemical Engineering, Amsterdam, v. 24, p. 168-175, dec. 2017. Disponível em: <http://linkinghub.elsevier.com/retrieve/pii/S102691851730046X>. Acesso em: 16 out. 2017.

PÉREZ-SUÁREZ, M. et al. Production and quality of senesced and green litterfall in a pine-oak forest in central-northwest Mexico. Forest Ecology and Management, Amsterdam, v. 258, p. 1307-1315, 2009.

PAULA, L. E. R.; TRUGILHO, P. F.; BIANCHI, M. L. Characterization of residues from plant biomass for use in energy generation. Cerne, Lavras, v. 17, n. 2, p. 237-246, 2011.

ROSILLO-CALLE, F.; BAJAY, S. V.; ROTHMAN, H. Uso da biomassa para produção de energia na indústria brasileira. Campinas: Unicamp, 2005. 447 p.

SOUZA, M. M. Caracterização e viabilidade econômica do uso energético de resídos da colheita florestal e do processamento de Pinus taeda L. 2010. 77 f. Dissertação (Mestrado em Engenharia Florestal) - Universidade Federal do Paraná, Curitiba, 2010.

TOKLU, E. Biomass energy potential and utilization in Turkey. Renewable Energy, Oxford, v. 107, p. 235-244, 2017.

TREVISAN, E. et al. Morfologia de horizontes orgânicos acumulados sob povoamentos de Pinus taeda L. em três sítios distintos. Ciências Agrárias, Curitiba, v. 9, p. 59-62, 1987.

VALE, A. T. et al. Caracterização energética e rendimento da carbonização de resíduos de grãos de café (Coffea arabica, L) e de madeira (Cerelinga catenaefornis). Cerne, Lavras, v. 13, n. 4, p. 416-420, 2007.

VALE, A. T. et al. Potencial energético da biomassa e carvão vegetal e da torta de pinhão-manso (Jatropha curcas). Cerne, Lavras, v. 17, n. 2, p. 267-273, 2011.

WU, Q. et al. Sustainable and renewable energy from biomass wastes in palm oil industry: a case study in Malaysia. International Journal of Hydrogen Energy, Oxorford, v. 42, n. 37, p. 23871-23877, 2017.

Published

2018-12-16

How to Cite

Mbanze, A. A., Silva, D. A. da, Tetto, A. F., Pereira, J. F., & Batista, A. C. (2018). THE ENERGETIC POTENTIAL OF FOREST FUELS IN Pinus elliottii STANDS IN SOUTHERN BRAZIL. Ciência Florestal, 28(4), 1640–1650. https://doi.org/10.5902/1980509835314

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>