Eco-friendly composite with matrix of recycled low-density polyethylene reinforced with wheat waste

Autor/innen

DOI:

https://doi.org/10.5902/1980509888280

Schlagworte:

Lignocellulosic reinforcement, Polymeric matrix, Wheat straw and bark, Sustainable materials

Abstract

The study investigated the effects of replacing varying amounts of straw and wheat husk residues on the properties of composites with a recycled low density polyethylene (LDPE) matrix. The composites were produced through the extrusion process, employing the following proportions: 0%, 10%, 20%, and 30% of wheat waste as reinforcement in the polymeric matrix. The agricultural wastes were reduced in particles and characterized in natura. The composites were shaped from pressing processes and their physical, mechanical and microstructural properties were evaluated. The results have shown an increase in water absorption for each 1% of wheat waste inserted in the composite of the order of 0.018%. The density of the composites decreased with the replacement of wheat waste by 4.8 g/cm3 for each 1% of replacement. The substitution of wheat waste increased the burning speed (flammability) when compared to recycled polymers (LDPE100%), indicating shorter fire spread time. There was a decrease in strength, modulus of elastic and tenacity, obtaining a material with high deformation.

Downloads

Keine Nutzungsdaten vorhanden.

Autor/innen-Biografien

Ianca Oliveira Borges, Federal University of Lavras

Universidade Federal de Lavras, Lavras, MG, Brazil

Master in Biomaterials Engineering

Ana Carolina Corrêa Furtini, Federal University of Lavras

Universidade Federal de Lavras, Lavras, MG, Brazil

Master in Biomaterials Engineering

Eduardo Hélio Novais Miranda, Federal University of Lavras

Universidade Federal de Lavras, Lavras, MG, Brazil

Master in Biomaterials Engineering

Lorran de Sousa Arantes, Federal University of Lavras

Universidade Federal de Lavras, Lavras, MG, Brazil

Doctor in Biomaterials Engineering

Diogo Antônio Correa Gomes, Federal University of Lavras

Universidade Federal de Lavras, Lavras, MG, Brazil

Master in Biomaterials Engineering

Jacinta Veloso de Carvalho, Federal University of Lavras

Universidade Federal de Lavras, Lavras, MG, Brazil

Master in Biomaterials Engineering

Jhonatan Sales Satiro, Federal University of Lavras

Universidade Federal de Lavras, Lavras, MG, Brazil

Master in Biomaterials Engineering

Bárbara Maria Ribeiro Guimarães de Oliveira, Federal University of Lavras

Universidade Federal de Lavras, Lavras, MG, Brazil

Doctor in Biomaterials Engineering

Lourival Marin Mendes, Federal University of Lavras

Universidade Federal de Lavras, Lavras, MG, Brazil

Doctor in Forestry Engineering

José Benedito Guimarães Júnior, Federal University of Lavras

Universidade Federal de Lavras, Lavras, MG, Brazil

Doctor in Biomaterials Engineering

Literaturhinweise

AMERICAN SOCIETY FOR TESTING AND MATERIALS - ASTM. D-1037: Standard Test Methods for Evaluating Properties of Wood-Base Fiber and Particle Panel Materials. 32p, 2012.

AMERICAN SOCIETY FOR TESTING AND MATERIALS - ASTM. D-570: Standard Test Method for Water Absorption of Plastics. 4p, 2012.

AMERICAN SOCIETY FOR TESTING AND MATERIALS - ASTM. D-635: Standard Test Method for Rate of Burning and/or Extent and Time of Burning of Plastics in a Horizontal Position. 8p, 2010.

AMERICAN SOCIETY FOR TESTING AND MATERIALS - ASTM. D-638: Standard Test Method for Tensile Proper-ties of Plastics. 17p, 2001.

ASSOCIAÇÃO BRASILEIRA DE INDÚSTRIAS DA BIOMASSA (ABIB). Inventário residual Brasil. 2011. Available at: http://pt.calameo.com/accounts/200968.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 11941: Madeira - Determinação da densidade básica. 6p, 2003.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 13999 - Papel, cartão, pastas celulósicas e madeira – Determinação do resíduo (cinza) após a incineração a 525ºC. 5p, 2017.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 14853 - Madeira - Determinação do material solúvel em etanol-tolueno e em diclorometano e em acetona. 3p, 2010.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7989 - Pasta celulósica e madeira - Determinação de lignina insolúvel em ácido. 6p, 2010.

BELLO, S. A.; RAJI, N. K.; KOLAWOLE, M. Y.; ADEBAYO, M. K.; ADEBISI, J. A.; OKUNOLA, K. A.; ABDULSALAAM, M. O. Eggshell nanoparticle reinforced recycled low-density polyethylene: A new material for automobile application. Journal of King Saud University-Engineering Sciences, 2021. DOI: https://doi.org/10.1016/j.jksues.2021.04.008. DOI: https://doi.org/10.1016/j.jksues.2021.04.008

BORGES, I. O.; MIRANDA, E. H. N.; BRITO, F. M. S.; ALTAFIN, N. C. S.; MENDES, L. M.; JÚNIOR, J. B. G. Potential for use of waste from soybean culture treated with water and sodium hydroxide for production of ag-glomerated panels. Research, Society and Development, v. 11, n. 2, 2022. DOI: https://doi.org/10.33448/RSD-V11I2.25762. DOI: https://doi.org/10.33448/rsd-v11i2.25762

BORGES, I. O.; SETTER, C.; MENEZES, R. C. C.; SILVA, D. W.; CASAGRANDE, N. B.; SCATOLINO, M. V.; ARANTES, L. S.; TONOLI, G. H. D. Effect of the modification of Pinus Kraft pulp with aluminum sulfate in cementitious composites. Eur. J. Wood Prod. 2024. DOI: https://doi.org/10.1007/s00107-024-02109-8. DOI: https://doi.org/10.1007/s00107-024-02109-8

COMPANHIA NACIONAL DE ABASTECIMENTO - CONAB. Levantamento de Safras 2023. Available at: https://www.conab.gov.br/ultimas-noticias/4847-producao-nacional-de-graos-e-estimada-em-312-2-milhoes-de-toneladas-na-safra-2022-23.

COSTES, L.; LAOUTID, F.; BROHEZ, S.; DUBOIS, P. Bio-based flame retardants: When nature meets fire pro-tection. Materials Science and Engineering R Reports. v. 117, p. 1-25, 2017. DOI: https://doi.org/10.1016/j.mser.2017.04.001. DOI: https://doi.org/10.1016/j.mser.2017.04.001

COUTINHO, F. M. B.; MELLO, I. L., MARIA, L. C. S. Polyethylene: main types, properties and applications. Polímeros, v. 13, p. 1–13, 2003. DOI: https://doi.org/10.1590/S0104-14282003000100005. DOI: https://doi.org/10.1590/S0104-14282003000100005

DAS, S. C.; ASHEK-E-KHODA, S.; SAYEED, M.A.; SURUZZAMAN, PAUL, D., DHAR, S.A., GRAMMATIKOS, S.A., 2021. On the use of wood charcoal filler to improve the properties of natural fiber reinforced polymer composites. Mater. Today Proc. v. 44, p. 926–929. DOI: https://doi.org/10.1016/J.MATPR.2020.10.808. DOI: https://doi.org/10.1016/j.matpr.2020.10.808

DUBEY, S. D.; MISHRA, V.; SHARMA, A. A review on polymer composite with waste material as reinforce-ment. Materials Today: Proceedings, v. 47, 2021. DOI: https://doi.org/10.1016/j.matpr.2021.03.611. DOI: https://doi.org/10.1016/j.matpr.2021.03.611

DURAN, A. J. F. P.; LOPES JÚNIOR, W. E.; PAVESI, M.; FIORELLI, J. Avaliação de painéis de média densidade de bagaço de cana-de-açúcar. Ciência Florestal, Santa Maria, v. 33, n. 3, e69624, p. 1-16, 2023. DOI: https://doi.org/10.5902/1980509869624. DOI: https://doi.org/10.5902/1980509869624

FERNANDES, I. J.; CALHEIRO, D.; SANTOS, E. C. A.; OLIVEIRA, R.; ROCHA, T. L. A. C.; MORAES, C. A. M. Comparison of rice peel ash and commercial silica as a load in polymeric composites. 21o CBECIMAT - Congr Bras Eng e Ciência dos Mater 2665–2672, 2014.

FERREIRA-LEITAO, V.; GOTTSCHALK, L. M. F.; FERRARA, M. A.; NEPOMUCENO, A. L.; MOLINARI, H. B. C.; BON, E. P. Biomass residues in Brazil: availability and potential uses. Waste and Biomass Valorization, v.1, p. 65-76, 2010. DOI: https://doi.org/10.1007/s12649-010-9008-8. DOI: https://doi.org/10.1007/s12649-010-9008-8

GEORGOPOULOS, S. T.; TARANTILI, P. A.; AVGERINOS, E.; ANDREOPOULOS, A. G.; KOUKIOS, E. G. Thermoplastic polymers reinforced with fibrous agricultural residues. Polym Degrad Stab, v. 90, p. 303–312, 2005. DOI: https://doi.org/10.1016/j.polymdegradstab.2005.02.020. DOI: https://doi.org/10.1016/j.polymdegradstab.2005.02.020

GOMES, D. A. C.; MIRANDA, E. H. N.; FURTINI, A. C. C.; SANTOS, C. A.; RESENDE, M. D.; VILLARRUEL, D. C. V.; GUIMARÃES JÚNIOR, J. B. Viabilidade De Compósitos Poliméricos De Polipropileno Reforçados Com Fibra De Bambu. Revista Brasileira de Engenharia de Biossistemas, v. 15, n. 4, p. 511–522, 2021. DOI: https://doi.org/10.18011/bioeng2021v15n4p511-522. DOI: https://doi.org/10.18011/bioeng2021v15n4p511-522

GOMES, D. A. C.; MIRANDA, E. H. N.; RESENDE, F. C.; VILLARRUEL, D. C. V.; MENDES, L. M.; JÚNIOR, J. B. G. Analysis of the influence of wheat residues on gypsum composites. Innovative Infrastructure Solutions, v. 8, n. 1, p. 1–10, 2022. DOI: https://doi.org/10.1007/S41062-022-01007-3. DOI: https://doi.org/10.1007/s41062-022-01007-3

GUIMARÃES JUNIOR, J. B.; XAVIER, M. M.; SANTOS, T. S.; PROTÁSIO, T. P.; MENDES, R. F.; MENDES, L. M. Inclusão de resíduo da cultura de sorgo em painéis aglomerados de eucalipto. Pesquisa Florestal Brasileira, v. 36, n. 88, p. 435–442, 2016. DOI: https://doi.org/10.4336/2016.pfb.36.88.1036. DOI: https://doi.org/10.4336/2016.pfb.36.88.1036

HUANG, H. X.; ZHANG, J. J. Effects of filler-filler and polymer-filler interactions on rheological and me-chanical properties of HDPE-wood composites. J Appl Polym Sci 111:2806–2812, 2009. DOI: https://doi.org/10.1002/app.29336. DOI: https://doi.org/10.1002/app.29336

IWAKIRI, S.; TRIANOSKI, R. Painéis de madeira reconstituída. Ajir Gráfica e Editora Ltda., 2020.

JHA, K. K.; KANNAN, T. T. M. Recycling of plastic waste into fuel by pyrolysis - a review Mater. Today Proc., 37, pp. 3718-3720, 2021. DOI: https://doi.org/10.1016/j.matpr.2020.10.181. DOI: https://doi.org/10.1016/j.matpr.2020.10.181

JIA, Y.; ZHANG, H.; ZHANG, J. The effect of peroxide cross-linking on the thermal conductivity and crys-tallinity of low-density polyethylene. Materials Today Communications, v. 31, 103735, 2022. DOI: https://doi.org/10.1016/j.mtcomm.2022.103735. DOI: https://doi.org/10.1016/j.mtcomm.2022.103735

KESKISAARI, A.; KÄRKI, T. The use of waste materials in wood-plastic composites and their impact on the profitability of the product. Resour Conserv Recycl, v. 134, p. 257–261, 2018. DOI: https://doi.org/10.1016/j.resconrec.2018.03.023. DOI: https://doi.org/10.1016/j.resconrec.2018.03.023

KIM, J. W.; HARPER, D. P.; TAYLOR, A. M. Effect of wood species on the mechanical and thermal properties of wood-plastic composites. J Appl Polym Sci, v. 112, p. 1378–1385, 2009. DOI: https://doi.org/10.1002/app.29522. DOI: https://doi.org/10.1002/app.29522

LEMOS, A. L.; MARTINS, R. M. Development and characterization of polymeric composites based on poly (lactic acid) and natural fibers. Polímeros Ciência e Tecnol, v. 24, p. 190–197, 2014. DOI: https://doi.org/10.4322/polimeros.2014.047. DOI: https://doi.org/10.4322/polimeros.2014.047

LIM, S. C.; CHUNG, R. C. K.; MALAYSIA. A dictionary of Malaysian timbers. Institut Penyelidikan Perhutanan, 2nd ed, p. 201, 2002.

MARK, J. E. Polymer data handbook. Ohio: Oxford University Press, 1999.

MERTENS, O.; GURR, J.; KRAUSE, A. The utilization of thermomechanical pulp fibers in WPC: A review. J Appl Polym Sci, v. 134, p. 45161, 2017. DOI: https://doi.org/10.1002/app.45161. DOI: https://doi.org/10.1002/app.45161

MIRANDA, E. H. N.; GOMES, D. A. C.; RESENDE, G. M. C. S.; GUIMARÃES, T. C.; MENDES, L. M.; GUIMARÃES JÚNIOR, J. B.; MIRANDA, E. H. N. Evaluation of the influence of the addition of bean residue in gypsum matrices. Clean Technologies and Environmental Policy, v. 1, p. 1–11, 2022. DOI: https://doi.org/10.1007/S10098-022-02389-9. DOI: https://doi.org/10.1007/s10098-022-02389-9

MIRANDA, E. H. N.; SILVA, G. A.; GOMES, D. A. C.; SILVEIRA, M. N. L. S.; VITORINO, F. C.; FERREIRA, S. R. Efeito de diferentes espécies de madeira e bambu na hidratação de matrizes à base de cimento Portland. Matéria (Rio de Janeiro), 2022a. DOI: https://doi.org/10.1590/1517-7076-RMAT-2022-0194. DOI: https://doi.org/10.1590/1517-7076-rmat-2022-0194

PEREIRA, G. B.; PEREIRA, G. C.; BENINI, K. C. C. C.; BANDEIRA, C. F.; MONTORO, S. R. Caracterização de compósitos de poliestireno de alto impacto (HIPS) reforçados com fibras de coco verde para eventual aplicação na indústria automobilística. Cadernos UniFOA, Volta Redonda, v. 12, n. 34, p. 15–22, 2017. DOI: https://doi.org/10.47385/cadunifoa.v12.n34.417. DOI: https://doi.org/10.47385/cadunifoa.v12.n34.417

POLETTO M. Thermoplastic composites with wood - a brief review. Interdisciplinary Journal of Applied Science, v. 2, n. 4, p. 42–48. Available from: https://sou.ucs.br/revistas/index.php/ricaucs/article/view/46.

PROTÁSIO, T. P.; TONOLI, G. H. D.; GUIMARÃES M.; BUFALINO, L.; COUTO, A. M.; TRUGILHO, P. F. Canonical correlations between chemical and energetic characteristics of lignocellulosic wastes. Cerne, v. 18, p. 433–439, 2012. DOI: https://doi.org/10.1590/S0104-77602012000300010. DOI: https://doi.org/10.1590/S0104-77602012000300010

RAGHU, M. J.; GOUD, G. Effect of water absorption on mechanical properties of Calotropis Procera fiber reinforced polymer composites. J. Appl. Agric. Sci. Technol, v. 4, n. 1, p. 3-11, 2020. DOI: https://doi.org/10.32530/jaast.v4i1.137. DOI: https://doi.org/10.32530/jaast.v4i1.137

RAHMAN, K.S.; ISLAM, M.; RAHMAN, M.; HANNAN, M.; DUNGANI, R.; KHALIL H.P.S. Flat-pressed wood plastic composites from sawdust and recycled polyethylene terephthalate (PET): physical and mechanical properties. Springerplus, v. 2, p. 629, 2013. DOI: https://doi.org/10.1186/2193-1801-2-629. DOI: https://doi.org/10.1186/2193-1801-2-629

RODRIGUES, F. R.; CAZELLA, P. H. DA S.; SOUZA, M. V. DE; BISPO, R. A.; ASSIS, L. F.; GILIO, C. G.; CHRISTOFORO, A. L.; MELLO DA SILVA, S. A. Produção de painéis de partículas de madeira com inclusão de poliestireno. Ciência Florestal, v., 33, n. 2, p. e68402, 2023. DOI: https://doi.org/10.5902/1980509868402. DOI: https://doi.org/10.5902/1980509868402

RODRIGUES, P. J. G.; SILVA, L. R. C.; NUNES FILHO, A. L.; BARBOSA, R.; AZEVEDO, J. B.; ALVES, T. S. Compósitos de policloreto de vinila e cortiça: avaliação das propriedades térmicas, inflamabilidade e morfologia. Tecnol Metal Mater Min. v.18, p. e2384, 2021. DOI: https://doi.org/10.4322/2176-1523.20212384. DOI: https://doi.org/10.4322/2176-1523.20212384

ROWELL, R. M. Advances and Challenges of Wood Polymer Composites. USDA, Forest Service, Forest Products Laboratory and Biological Systems Engineering, p. 11, 2006.

SAI REVANTH, J.; SAI MADHAV, V.; KALYAN SAI, Y.; VINEETH KRISHNA, D.; SRIVIDYA, K.; MOHAN SUMANTH, C.H. TGA and DSC analysis of vinyl ester reinforced by Vetiveria zizanioides jute and glass fiber. Mater. Today Proc. v. 26, p. 460–465, 2020. DOI: https://doi.org/10.1016/J.MATPR.2019.12.082. DOI: https://doi.org/10.1016/j.matpr.2019.12.082

SANTOS, C. A.; FURTINI, A. C. C.; VILLARRUEL, D. C. V.; MIRANDA, E. H. N.; GOMES, D. A. C.; MENDES, L. M.; JÚNIOR, J. B. G. Use of Pinus oocarpa and Coffea arabica wood for the production of oriented particle board (OSB). Research, Society and Development, v. 11, n. 3, 2022. DOI: https://doi.org/10.33448/RSD-V11I3.26795. DOI: https://doi.org/10.33448/rsd-v11i3.26795

SANTOS, T. P. D.; GARCIA, H. V. S.; LOPES, T. A.; SANTOS, C. A. D.; FURTINI, A. C. C.; MENDES, L. M.; GUIMARÃES JUNIOR, J. B. Potencial de utilização do resíduo de soja como carga em polietileno de baixa densidade (LDPE). Matéria (Rio de Janeiro), v. 26, n. 4, 2022. DOI: https://doi.org/10.1590/S1517-707620210004.1367. DOI: https://doi.org/10.1590/s1517-707620210004.1367

SCATOLINO, M. V.; COSTA, A. O.; GUIMARÃES, J. B.; PROTÁSIO, T. P.; MENDES, R. F.; MENDES, L. M. Eucalyptus wood and coffee parchment for particleboard production: Physical and mechanical properties. Ciência e Agrotecnologia, v. 41, n. 2, p. 139–146, 2017. DOI: https://doi.org/10.1590/1413-70542017412038616. DOI: https://doi.org/10.1590/1413-70542017412038616

SCATOLINO, M. V.; SILVA, D. W.; MENDES, R. F.; MENDES, L. M. Use of maize cob for production of parti-leboard. Ciência e Agrotecnologia, v. 37, n. 4, p. 330–337, 2013. DOI: https://doi.org/10.1590/S1413-70542013000400006. DOI: https://doi.org/10.1590/S1413-70542013000400006

SHESHMANI, S.; ASHORI, A.; FARHANI, F. Effect of extractives on the performance properties of wood flour-polypropylene composites. J Appl Polym Sci 123:1563–1567, 2012. DOI: https://doi.org/10.1002/app.34745. DOI: https://doi.org/10.1002/app.34745

SOARES, S. S.; JÚNIOR, J. B. G.; MENDES, L. M.; MENDES, R. F.; PROTÁSIO, T. P.; LISBOA, F. N. Valorização do bagaço de cana-de-açúcar na produção de painéis aglomerados de baixa densidade. Revista Ciência da Madeira (Brazilian Journal of Wood Science), v. 8, n. 2, p. 64–73, 2017. DOI: https://doi.org/10.12953/2177-6830/rcm.v8n2p64-73. DOI: https://doi.org/10.12953/2177-6830/rcm.v8n2p64-73

SPEAR, M. J.; EDER, A.; CARUS, M. Wood polymer composites. In: Wood Composites. Elsevier, pp 195–249, 2015. DOI: https://doi.org/10.1016/B978-1-78242-454-3.00010-X

UNDERWRITERS LABORATORIES INC. UL 94: Standard for Safety for Tests for Flammability of Plastic Materials for Parts in Devices and Appliances. 42p, 1994.

VELOSO, M. C. R. A.; SCATOLINO, M. V.; GONÇALVES, M. M. B. P.; VALLE, M. L. A.; PROTÁSIO, T. P.; MENDES, L. M.; GUIMARÃES JUNIOR, J. B. Sustainable valorization of recycled low-density polyethylene and cocoa biomass for composite production. Environ Sci Pollut Res, v. 28, p. 32810–32822, 2021. DOI: https://doi.org/10.1007/s11356-021-13061-y. DOI: https://doi.org/10.1007/s11356-021-13061-y

WOLCOTT, M. P.; ENGLUND, K. A technology review of wood-plastic composites. 33rd Int Part Mater Symp 103–111, 1999.

WONG, M. C.; HENDRIKSE, S. I. S.; SHERRELL, P. C.; ELLIS, A. V. Grapevine waste in sustainable hybrid particleboard production. Waste Management, v. 118, p. 501–509, 2020. DOI: https://doi.org/10.1016/J.WASMAN.2020.09.007. DOI: https://doi.org/10.1016/j.wasman.2020.09.007

Downloads

Veröffentlicht

2025-05-30

Zitationsvorschlag

Borges, I. O., Furtini, A. C. C., Miranda, E. H. N., Arantes, L. de S., Gomes, D. A. C., Carvalho, J. V. de, Satiro, J. S., Oliveira, B. M. R. G. de, Mendes, L. M., & Guimarães Júnior, J. B. (2025). Eco-friendly composite with matrix of recycled low-density polyethylene reinforced with wheat waste. Ciência Florestal, 35, e88280. https://doi.org/10.5902/1980509888280

Am häufigsten gelesenen Artikel dieser/dieses Autor/in

1 2 > >>