LIGNIFICAÇÃO E CRESCIMENTO DE <i>Eucalyptus grandis</i> (HILL EX MAIDEN) COM GA3 E BAP

Autores

  • Regina Paula Willemen Pereira
  • Maria Beatriz de Oliveira Monteiro
  • Heber dos Santos Abreu

DOI:

https://doi.org/10.5902/1980509822763

Palavras-chave:

Eucalyptus grandis, parede celular, lignina, biotecnologia florestal.

Resumo

Nesta pesquisa foram realizados experimentos com duas classes de hormônios vegetais (giberelina e citocinina); com o objetivo de verificar o efeito do ácido giberélico e 6-benzilaminopurina (GA3 e BAP) sobre a lignificação e o crescimento longitudinal em mudas de Eucalyptus grandis. O experimento foi realizado em casa de vegetação, na qual foram aplicados os reguladores de crescimento combinados ou isolados, nas seguintes concentrações: GA3 (49,13 μM e 98,26 μM); BAP (111 μM e 222 μM), com cinco repetições para cada tratamento. As comparações entre as médias da altura das plantas aos 6 meses mostraram que os alongamentos mais pronunciados do caule corresponderam aos tratamentos com a maior concentração de GA3. No tratamento em que foi combinada a menor concentração de GA3 com a menor concentração de BAP (49,13 μM de GA3 + 111 μM de BAP), ocorreu o menor teor de lignina 23,37%.

Downloads

Não há dados estatísticos.

Referências

ABRANTES, F. L. et al. Uso de regulador de crescimento em cultivares de feijão de inverno. Pesquisa Agropecuária Tropical, Goiânia, v. 41, n. 2, p. 148-154, 2011.

BHATTACHARYA, A. et al. Practical Applications of Manipulating Plant Architecture by Regulating Gibberellin Metabolism. Journal of Plant Growth Regulation, v. 29, n. 2, p. 249-256, 2010.

BROWNING, B. L. Methods of wood chemistry. Interscience Publishers, New York, v. 1, p. 75-89, 1967.

CHEN, F., DIXON, R. A. Lignin Modification Improves Fermentable Sugar Yields for Biofuel Production. Nature Biotechnology, v. 25, p. 759-761, 2007.

DETTMER, J. et al. Hormone interactions during vascular development. Plant Molecular Biology, v. 69, p. 347–360, 2009.

EFFLAND, M. J. Modified procedure to determine acid-insoluble lignin in wood and pulp. Teppi, v. 60, n. 10, p. 143-144, 1977.

GALLEGO-GIRALDO, L. et al. Salicylic acid mediates the reduced growth of lignin down-regulated plants. Proceedings of the National Academy of Sciences of the United States of America, v. 108, n. 51, p. 20814-20819, 2011.

KAPCHINA-TOTEVA, V.; YAKIMOVA, E. Effect of purine and phenylureacytokinins on peroxidase activity in relation to apical dominance of in vitro cultivated Rosa hybrid L. Bulgarian Journal of Plant Physiology, v. 23, n. 1-2; p. 40-48, 1997.

LANA, A. M. Q. et al. Aplicação de reguladores de crescimento na cultura do feijoeiro. Bioscience Journal, v. 25, n. 1, p. 13-20, 2009.

LARA, M. E. B. et al. Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. The Plant Cell, v. 16, p. 1276-1287, 2004.

LIN, S. Y.; DANCE, C. W. Methods in lignin chemistry. Berlim: Springer, 1992. 608 p.

MONTEIRO, M. B. O. et al. Análise composicional por espectrometria de infravermelho da lignina de Eucalyptus urophylla S. T. Blake tratados com reguladores de crescimento. Biochemistry and Biotechnology Reports, v. 1, n. 2, 2012.

MORK, D. W.; MORK, M. C. Cytokinin metabolism and action. Annual Review of Plant Physiology and Plant Molecular Biology, v. 52, p. 89–118, 2001.

MUJIB, A. et al. Catharanthusroseus alkaloids: application of biotechnology for improving yield. Plant Growth Regulation, v. 68, p. 111-127, 2012.

NISLER, J. et al. Cytokinin receptor antagonists derived from 6-benzylaminopurine. Phytochemistry, v. 71, p. 823–830, 2010.

PEREIRA, R. P. W. et al. Bioinformação do Processo de Lignificação. 1. ed. Seropédica: EDUR, 2012.

PHARIS, R. et al. Superior growth potential in trees: what is its basis, and can it be tested for at an early age. Canadian Journal of Forest Research, v. 21, p. 368-374, 1991.

QIN, F. et al. Spindly, a Negative Regulator of Gibberellic Acid Signaling, Is Involved in the Plant Abiotic Stress Response. Plant Physiology, v. 157, p. 1900–1913, 2011.

QUEIROZ, D. L. et al. Feeding and oviposition preferences of Ctenarytainaspatulata Taylor (Hemiptera, Psyllidae) for Eucalyptus spp. and other Myrtaceae in Brazil. Revista Brasileira de Entomologia, v. 54, n. 1, p. 149–153, 2010.

SHRIVASTAVA, B.; NANDALA, P. Solid state bioconversion of wheat straw into digestible and nutritive ruminant feed by Ganoderma sp. rckk02. Bioresource Technology, v. 107, p. 347–351, 2012.

SMOAK, E. M. et al. Self-assembly of gibberellic amide assemblies and their applications in the growth and fabrication of ordered gold nanoparticles. Nanotechnology, v. 21, n. 2, p. 25101-25704, 2010.

TOKUNAGA, N. et al. Involvement of gibberellin in tracheary element differentiation and lignification in Zinnia elegans xylogenic culture. Protoplasma, v. 228, n. 4, p. 179-187, 2006.

VALERI, S. V. Efeitos da adubação NPK e do calcário dolomítico no desenvolvimento de Eucalyptus grandis Hill ex Maiden. Silvicultura, São Paulo, v. 8, n. 28, p. 531-5366, 1983.

WERBROUCK, S. P. O. et al. Meta-topolin, an alternative to benzyladenine in tissue culture? Physiologia Plantarum, v. 98, p. 291–297, 1996.

ZHAO, Q. et al. Syringyl lignin biosynthesis is directly regulated by a secondary cell wall master switch. Proceedings of the National Academy of Sciences, v. 107, p. 14496–14501, 2010.

ZIEBELL, A. et al. Increase in 4-coumaryl alcohol units during lignification in alfalfa (Medicago sativa) alters the extractability and molecular weight of lignin. Journal of Biological Chemistry, v. 285, n. 50, p. 38961–38968, 2010.

Downloads

Publicado

20-06-2016

Como Citar

Pereira, R. P. W., Monteiro, M. B. de O., & Abreu, H. dos S. (2016). LIGNIFICAÇÃO E CRESCIMENTO DE <i>Eucalyptus grandis</i> (HILL EX MAIDEN) COM GA3 E BAP. Ciência Florestal, 26(2), 639–646. https://doi.org/10.5902/1980509822763

Edição

Seção

Nota Técnica

Artigos mais lidos pelo mesmo(s) autor(es)