Características fisiológicas de mudas de Eucalyptus spp submetidas a estresse salino.

Andréa Vita Reis Mendonça, José Geraldo de Araújo Carneiro, Teresa Aparecida Soares de Freitas, Deborah Guerra Barroso

Resumo


Este trabalho objetivou avaliar como o aumento da concentração de cloreto de sódio (NaCl) influencia o rendimento quântico potencial do fotossistema II (Fv/Fm), índice da intensidade da cor verde nas folhas (valor SPAD), área foliar, biomassa seca foliar e concentração de potássio (K) e sódio (Na) nas folhas de mudas de espécies de Eucalyptus. O experimento foi conduzido em casa de vegetação, em vasos de 11,5 L, preenchidos com areia e irrigados com solução salinizada, em Campos dos Goytacazes, RJ. O delineamento experimental foi inteiramente casualizado em esquema fatorial com quatro espécies (Eucalyptus camaldulensis, Eucalyptus tereticornis, Eucalyptus pellita e Eucalyptus robusta) e cinco níveis de salinidade (1,4; 2,50; 4,50; 6,45 e 8,33 dS m-1), com cinco repetições. Até o nível máximo de salinidade aplicado, as mudas de Eucalyptus camaldulensis, Eucalyptus tereticornis e Eucalyptus robusta responderam positivamente com relação às características valor SPAD, rendimento quântico potencial do fotossistema II, biomassa seca foliar e área foliar. Essas avaliações sugerem tolerância dessas espécies às condições de salinidade impostas. Mudas de Eucalyptus pellita mostraram sensibilidade ao estresse salino. As reduções da biomassa seca e área foliar podem estar relacionadas a estratégias de resistência das plantas ao estresse salino.

Palavras-chave


salinidade; fluorescência

Texto completo:

PDF

Referências


BALL, M. C.et al. Applications of chlorophyll fluorescence to forest ecology. Australian Journal of Plant Physiology, v. 22, p. 311-319, 1994.

BANZATTO, D. A.; KRONKA, S. N. Experimentação agrícola. Jaboticabal, FUNEP, 1992. 247p.

BOLLES JONES, E.W. Nutrition of Hevea brasiliensis I. Experimental methods. Journal Rubber Research Institute of Malaysia, v. 14, p. 183, 1954.

BRUGNOLI, E.; BJORKMAN, O. Growth of cotton under continuous salinity stress: influence on allocation pattern, stomatal and non stomatal components of photosynthesis and dissipation of excess light energy. Planta, v. 187, n. 3, p. 335-347, 1992.

BRUGNOLI, E.; LAUTERI, M. Effect of salinity on stomatal conductance, photosynthetic capacity and carbon isotope discrimination of salt tolerant (Gossypium hirsutum L.) and salt sensitive (Phaseolus vulgaris L.) C3 non halophyts. Plant physiology., v. 95, n. 2, p. 628-635, 1991.

CAVALCANTE, L. F. et al. Desenvolvimento inicial da gravioleira sob fontes e níveis de salinidade da água. Revista Brasileira de Fruticultura, v. 23, n. 2, p. 455-459, 2001.

FERNANDES, A. R. et al. Crescimento de mudas de pupunheira (Bactris gasipaes H. B. K) sob diferentes níveis de salinidade. Ciência Agrotécnica, v. 27, n. 2, p. 278-284, 2003.

FERREIRA, R. G. et al. Distribuição da matéria seca e composição química das raízes, caule e folhas de goiabeira submetida a estresse salino. Pesquisa agropecuária Brasileira, v. 36, n.1, p. 79-88, 2001.

GREENWOOD, E. A. N. et al. The influence of ground water levels and salinity on a multi specied tree plantation in the 500mm rainfall region of south western Australia. Agricultural Water Management, v. 25, n. 2, p. 185-200, 1994.

HENDRY G. A. F.; PRICE, A. H. Stress indicators: chlorophyll and carotenoids. In: HENDRY G. A. F.; GRIME, J. P. (Eds.), Methods in Comparative Plant Ecology. Chapman & Hall, London, 1993. p. 148-152.

JAMIL, M. et al. Salinity reduced growth PS2 photochemistry and chlorophyll content in radish. Scientia Agricola. v. 64, n. 2, p. 111-118, 2007.

JIANG, Q. et al. Gas exchange chlorophyll fluorescence parameters and carbon isotope discrimination of 14 barley genetic lines in response to salinity. Field Crops Research, v. 96, n. 2-3, p.269-278, 2006.

JONES JÚNIOR., J. B. et al. Plant analysis handbook: a practical sampling, preparation, analysis and interpretation guide. Athens: Micro – Macro Publishing, 1991. 213 p.

JUNGKLANG, J. et al. Differences in physiological responses to NaCl between salt-tolerant Sesbania rostrata Brem. & Oberm. and non- tolerant Phaseolus vulgaris L. Weed Biology and Management, v. 3, n. 1, p. 21–27, 2003.

LEE, G. et al. Photosynthetic response to salinity stress of halophytic seashore paspalum ecotypes. Plant Science, v. 166, n. 6, p. 1417-1425, 2004.

LU, C. et al. Does salt stress lead to increased susceptibility of photosystem II to photoinhibition and changes in photosynthetic pigment. Composition in halophyt Sueda salsa grown outdoors? Plant Science, v. 163, n. 5, p. 1063-1068, 2002.

LU, C. et al. Photosystens II photochemistry and photosynthetic pigment composition in salt-adapted halophyte Artimisia anethifolia grown under outdoor conditions. Brazilian Journal of Plant Physiology, v. 160, n. 2, p. 403-408, 2003.

MALAVOLTA, E. et al. Avaliação do Estado Nutricional das Plantas, Princípio e Aplicações. 2. ed. Piracicaba: Potafos, 1997. 319 p.

MARCAR, N. E. Waterlogging modifies growth, water use and ion concentration in seedlings of salt treated Eucalyptus camaldulensis, E. tereticornis, E. robusta and E. globulus. Australian Journal of Plant Physiology, v. 20, p. 1-13, 1993.

MARSCHNER, H. Mineral nutrition of higher plants. 2nd ed. San Diego: Academic Press, 1995. 889 p.

MILFORD, G. F. J. et al. Effects of sodium chloride on water status and growth of sugar beet. Journal of Experimental Botany, v. 28, p. 1380-1388, 1977.

MISHRA, A. et al. Improvement in physical and chemical properties of sodic soil by 3, 6 and 9 years old plantations of Eucalyptus tereticornis: Biorejuvenation of sodic soil. Forest Ecology and Management, v. 184, n. 1-3, p. 115-124, 2003.

MISRA, A. et al. Utilization of fast chlorophyll a fluorescence technique in assessing the salt/ion sensitivity of Mung Bean and Brassica seedling. Journal of Plant Physiology, v. 158, n. 9, p. 1173-1181, 2001.

O’LEARY, J. W. Adaptative components of tolerance. In: PESSARAKLI, M. (ed.) Handbook of plant and crop physiology. New York: Marcel Dekker,1995. p. 577-585.

POLJAKOFF-MAYBER, A.; LERNER, H. R. Plants in saline environment. In: PESSARAKLI, M. (Ed.) Handbook of plant and crop stress. New York: Marcel Deckker, 1994 p. 65-96.

RAMOLIYA P. J.; PANDEY A. N. Effect of increasing salt concentration on emergence, growth and survival of seedlings of Salvadora oleoides (Salvadoraceae) Journal of Arid Environments, v. 51, n. 1, p. 121–132, 2002.

RAWAT, J. S.; BANERJEE, S. P. The influence of salinity on growth biomass production and photosynthesis of Eucalyptus camaldulensis. Dehnh and Dalbergia sissoo Roxb seedlins. Plant and Soil, v. 205, n. 2, p. 163-169, 1998.

SNEDECOR, W., G., COCHRAN, W. G. Statistical methods. 8th ed. Iowa: Iowa State University Press, 1989. 502 p.

SU, N. et al. Simulating water and salt movement in tile drained fields irrigated with saline water under a Serial Biological Concentration Management Scenario. Agricultural Water Management, v. 78, n. 3, p. 165-180, 2005.

SUN, D.; DICKINSON, G. Response to salt stress of 16 Eucalyptus species, Grevillea robusta, Lophosternon confertus and Pinus caribaea. Forest Ecology and Management, v. 60, n. 1-2, p. 1-14, 1993.

SVITSEV, M. V. et al. Effect of salinization and herbicides on chlorophyllase activity in tomato leaves. Fiziologiya Rastenii., v. 20, p. 62-65,1973.

TOMAR, O. S. et al. Performance of 31 tree species and soil conditions in plantation established with saline irrigation. Forest Ecology and Management, v. 177, n. 1-3, p. 333-346, 2003.

WANG, D. et al. Biophysical properties and biomass production of elephant grass under saline conditions. Journal of Arid Environment, v. 52, n. 4, p. 447-456, 2002.

WATAB, A. A. et al. Enhanced net K+ uptake capacity of NaCl-adapted cells. Plant Physiology, Rockville, v. 95, n. 4, p. 1265-1269, 1991.




DOI: https://doi.org/10.5902/198050981850

Licença Creative Commons