A distribuição Lindley potência inversa: diferentes métodos de estimação
DOI:
https://doi.org/10.5902/2179460X27500Palavras-chave:
Distribuição Lindley potência inversa, Métodos de estimação, Verossimilhança, Simulação Monte CarloResumo
Nos últimos anos diversas distribuições de probabilidade foram propostas na literatura com propósitos de se obter funções densidade e de risco mais flexíveis. Por exemplo, Ghitany et al. (2013) propuseram uma generalização da distribuição Lindley e a nomearam de distribuição Lindley potência enquanto que Sharma et al. (2015a) propuseram a distribuição Lindley inversa. A partir destas duas generalizações, Barco et al. (2017) estudaram a distribuição Lindley potência inversa, também chamada por Sharma et al. (2015b) de Lindley inversa generalizada. Neste artigo, considerando a proposta de Barco et al. (2017), avaliou-se, via simulações Monte Carlo, o viés e acurácia de nove métodos de estimação (o método da máxima verossimilhança e oito outros baseados nas distâncias entre as funções de distribuições empíricas e teóricas). Os resultados provenientes do estudo de simulação indicam melhor desempenho do método de estimação baseado na estatística do teste de Anderson-Darling. Esta conclusão também é observada na análise de dois conjuntos de dados reais.
Downloads
Referências
Barco, K. V. P., Mazucheli, J., Janeiro, V. (2017). The inverse power Lindley distribution. Communications in Statistics - Simulation and Computation, 46(8), 6308–6323.
D’Agostino, R. B., Stephens, M. A. (1986). Goodness-of-Fit Techniques. Taylor & Francis.
Dey, S., Mazucheli, J., Nadarajah, S. (2017). Kumaraswamy distribution: Different methods of estimation. Computational and Applied Mathematics, pp. 1–18.
Doornik, J. A. (2007). Object-Oriented Matrix Programming Using Ox, 3rd ed. London: Timberlake Consultants Press and Oxford.
do Espirito-Santo, A. P. J., Mazucheli, J. (2015). Comparison of estimation methods for the Marshall-Olkin extended Lindley distribution. Journal of Statistical Computation and Simulation, 85(17), 3437–3450.
Ghitany, M. E., Atieh, B., Nadarajah, S. (2008). Lindley distribution and its application. Mathematics and Computers in Simulation, 78(4), 493–506.
Ghitany, M. E., Al-Mutairi, D. K., Balakrishnan, N., Al-Enezi, L. J. (2013). Power Lindley distribution and associated inference.
Computational Statistics and Data Analysis, 64, 20–33.
Gupta, R. D., Kundu, D. (2001). Generalized Exponential distribution: Different method of estimations. Journal of Statistical Computation and Simulation, 69(4), 315–337.
Kundu, D., Raqab, M. Z. (2005). Generalized Rayleigh distribution: Different methods of estimations. Computational Statistics & Data Analysis, 49(1), 187–200.
Lehmann, E. J., Casella, G. (1998). Theory of Point Estimation. Springer Verlag.
Lindley, D. V. (1958). Fiducial distributions and Bayes’ theorem. Journal of the Royal Statistical Society, 20(1), 102–107.
Lucenõ, A. (2006). Fitting the Generalized Pareto distribution to data using maximum goodness-of-fit estimators. Computational Statistics & Data Analysis, 51(2), 904–917.
Mahmoud, M. R., Mandouh, R. M. (2013). On the transmuted Fréchet distribution. Journal of Applied Sciences Research, 9(10), 5553–5561.Mazucheli, J., Louzada, F., Ghitany, M. E. (2013). Comparison of estimation methods for the parameters of the weighted Lindley distribution. Applied Mathematics and Computation, 220, 463–471.
Mazucheli, J., Fernandes, L. B., de Oliveira, R. P. (2016). LindleyR: The Lindley Distribution and Its Modifications. URL https://CRAN.R-project.org/package=LindleyR, R package version 1.1.0.
Mazucheli, J., Ghitany, M. E., Louzada, F. (2017). Comparisons of ten estimation methods for the parameters of Marshall-Olkin extended Exponential distribution. Communications in Statistics - Simulation and Computation, 46(7), 5627–5645.
Nadarajah, S., Bakouch, H. S., Tahmasbi, R. (2011). A generalized Lindley distribution. Sankhya B, 73(2), 331–359.
Pawitan, Y. (2001). In All Likelihood: Statistical Modelling and Inference Using Likelihood. Oxford University Press, Oxford.
R Core Team (2017). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, URL https://www.R-project.org/.
Rohde, C. A. (2014). Introductory Statistical Inference with the Likelihood Function. Springer-Verlag, New York.
Sharma, V. K., Singh, S. K., Singh, U., Agiwal, V. (2015a). The inverse Lindley distribution: A stress-strength reliability model with application to head and neck cancer data. Journal of Industrial and Production Engineering, 32(3), 162–173.
Sharma, V. K., Singh, S. K., Singh, U., Merovci, F. (2015b). The generalized inverse Lindley distribution: A new inverse statistical model for the study of upside-down bathtub data. Communication in Statistics - Theory and Methods, 45(19), 5709–5729.
Teimouri, M., Hoseini, S. M., Nadarajah, S. (2013). Comparison of estimation methods for the Weibull distribution. Statistics, 47(1), 93–109.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Para acessar a DECLARAÇÃO DE ORIGINALIDADE E EXCLUSIVIDADE E CESSÃO DE DIREITOS AUTORAIS clique aqui.
Diretrizes Éticas para Publicação de Revistas
A revista Ciência e Natura está empenhada em garantir a ética na publicação e na qualidade dos artigos.
A conformidade com padrões de comportamento ético é, portanto, esperada de todas as partes envolvidas: Autores, Editores e Revisores.
Em particular,
Autores: Os Autores devem apresentar uma discussão objetiva sobre a importância do trabalho de pesquisa, bem como detalhes e referências suficientes para permitir que outros reproduzam as experiências. Declarações fraudulentas ou intencionalmente incorretas constituem comportamento antiético e são inaceitáveis. Artigos de Revisão também devem ser objetivos, abrangentes e relatos precisos do estado da arte. Os Autores devem assegurar que seu trabalho é uma obra totalmente original, e se o trabalho e / ou palavras de outros têm sido utilizadas, isso tem sido devidamente reconhecido. O plágio em todas as suas formas constitui um comportamento publicitário não ético e é inaceitável. Submeter o mesmo manuscrito a mais de um jornal simultaneamente constitui um comportamento publicitário não ético e é inaceitável. Os Autores não devem submeter artigos que descrevam essencialmente a mesma pesquisa a mais de uma revista. O Autor correspondente deve garantir que haja um consenso total de todos os Co-autores na aprovação da versão final do artigo e sua submissão para publicação.
Editores: Os Editores devem avaliar manuscritos exclusivamente com base no seu mérito acadêmico. Um Editor não deve usar informações não publicadas na própria pesquisa do Editor sem o consentimento expresso por escrito do Autor. Os Editores devem tomar medidas de resposta razoável quando tiverem sido apresentadas queixas éticas relativas a um manuscrito submetido ou publicado.
Revisores: Todos os manuscritos recebidos para revisão devem ser tratados como documentos confidenciais. As informações ou ideias privilegiadas obtidas através da análise por pares devem ser mantidas confidenciais e não utilizadas para vantagens pessoais. As revisões devem ser conduzidas objetivamente e as observações devem ser formuladas claramente com argumentos de apoio, de modo que os Autores possam usá-los para melhorar o artigo. Qualquer Revisor selecionado que se sinta desqualificado para rever a pesquisa relatada em um manuscrito ou sabe que sua rápida revisão será impossível deve notificar o Editor e desculpar-se do processo de revisão. Os Revisores não devem considerar manuscritos nos quais tenham conflitos de interesse resultantes de relacionamentos ou conexões competitivas, colaborativas ou outras conexões com qualquer dos autores, empresas ou instituições conectadas aos documentos.