Análise da Propagação e Manutenção dos Vórtices gerados por um Microburst Estático e Isolado

Autores

  • Giuliano Demarco Universidade Federal de Santa Maria - UFSM
  • Vagner Anabor Universidade Federal de Santa Maria Centro de Ciências Naturais e Exatas
  • Umberto Rizza Consiglio Nazionale delle Ricerche, Istituto Di Scienze Dell Atmosfera e Del Clima.
  • Franciano Scremin Puhales Universidade Federal de Santa Maria
  • Luís Gustavo Nogueira Martins Universidade Federal de Santa Maria
  • Felipe Denardin Costa Universidade Federal do Pampa
  • Otávio Costa Acevedo Universidade Federal de Santa Maria

DOI:

https://doi.org/10.5902/2179460X19849

Palavras-chave:

Vorticidade. Simulação dos grandes turbilhões. Microburst.

Resumo

A Região Sul do Brasil é especialmente atingida por eventos meteorológicos extremos. Frequentemente rajadas de vento intensas oriundas da convecção profunda podem se desenvolver como Microbursts, produzindo ventos superiores a 100 km/h. Na tentativa de compreender os processos físicos e dinâmicos envolvidos neste fenômeno, um microburst estático e isolado foi produzido através da simulação de grandes turbilhões. Uma análise qualitativa da propagação e manutenção do anel de vorticidade gerado pelo microburst é realizada com o objetivo de entender sua evolução.

Downloads

Não há dados estatísticos.

Biografia do Autor

Giuliano Demarco, Universidade Federal de Santa Maria - UFSM

Pós Doutorando no Programa de Pós Graduação em Física (UFSM) e Professor Voluntário no Departamento de Física (UFSM)

Vagner Anabor, Universidade Federal de Santa Maria Centro de Ciências Naturais e Exatas

Professor do Departamento de Física do Centro de Ciências Naturais e Exatas da Universidade Federal de Santa Maria.

Umberto Rizza, Consiglio Nazionale delle Ricerche, Istituto Di Scienze Dell Atmosfera e Del Clima.

Pesquisador Senior no Consiglio Nazionale delle Ricerche d'Italia.

Franciano Scremin Puhales, Universidade Federal de Santa Maria

Professor do Departamento de Física do Centro de Ciências Naturais e Exatas da Universidade Federal de Santa Maria.

Luís Gustavo Nogueira Martins, Universidade Federal de Santa Maria

Pós do Programa de Pós-Graduação em Meteorologia

Felipe Denardin Costa, Universidade Federal do Pampa

Professor da Universidade Federal do Pampa (Campus Alegrete)

Otávio Costa Acevedo, Universidade Federal de Santa Maria

Professor do Departamento de Física do Centro de Ciências Naturais e Exatas da Universidade Federal de Santa Maria.

Referências

Anabor, V., Rizza, U., Nascimento, E. L., Degrazia, G. A. (2011). Large-eddy simulation of a microburst. Atmospheric Chemistry and Physics, 11, 9323 – 9331.

Demarco, G., Barrere, N., Sarasúa, G., Martí, A., Acevedo, O., Nascimento, E., Cabeza, C. (2013). Combined effect of jet impingement and density perturbation

forcing on the evolution of laboratory-simulated microbursts. Journal of Wind Engineering and Industrial Aerodynamics, 123, 69–76.

Fujita, T. (1985). The downburst, microburst and macroburst, sattellite and mesometeorology research project (smrp). Dept of Geophisycal Science, 210, 122p.

Fujita, T. (1990). Downbursts: meteorological features and wind field characteristics. Journal of Wind Engineering and Industrial Aerodynamics, 36, 75–86.

Hjelmfelt, M. (1987). The microburst of 22 june 1982 in jaws. Journal of the Atmospheric Sciences, 44(12), 1646 – 1665.

Hjelmfelt, M. (1988). Structure and life cycle of microburst outflows observed in colorado. Journal of Appllied Meteorology, 27, 900 – 927.

Kim, J., Hangan, H. (2007). Numerical simulations of impinging jets with application to downbursts. Journal of Wind Engineering and Industrial Aerodynamics, 95, 279– 298.

Landreth, C. C., Adrian, R. J. (1990). Impingement of a low reynolds number turbulent circular jet onto a flat plate at normal incidence. Experiments in Fluids, 9, 74 – 84.

Lundgren, T., Yao, J., Mansour, N. (1992). Microburst modelling and scaling. Journal of Fluid Mechanics, 239, 461 – 488.

Mason, M., Letchforda, C., James, D. (2005). Pulsed wall jet simulation of a stationary thunderstorm downburst, part a: Physical structure and flow field characterization. Journal of Wind Engineering and Industrial Aerodynamics, 93, 557–580.

Moeng, C. H. (1984). A large-eddy-simulation model for the study of planetary boundary layer turbulence. Journal of Atmospheric Science, 41(13), 2052–2062.

Orf, L. G., Anderson, J. R., Straka, J. M. (1996). A three-dimensional numerical analysis of colliding microburst outflow dynamics. Journal of Atmospheric Sciences, 53, 2490–2511.

Proctor, F. H. (1988). Numerical simulations of an isolated microburst. part i: Dynamics and structure. Journal of the atmospheric sciences, 45, 3137–3160.

Proctor, F. H. (1989). Numerical simulationsof an isolated microburst. part ii: Sensitivity experiments. Journal of the atmospheric sciences, 46, 2143–2165.

Sullivan, P. P., McWilliams, J. C., Moeng, C. H. (1994). A subgrid-scale model for large-eddy simulations of planetary boundary-layer flows. Boundary Layer Meteorology, 71(3), 247–276.

Vermeire, B. C., Orf., L. G., Savory, E. (2011). Improved modelling of downburst out flows for wind engineering applications using a cooling source approach. Journal of Wind Engineering and Industrial Aerodynamics, 99, 801–814.

Wakimoto, R. M. (2001). Convectively-driven high wind events. American Meteorological Society, 28, 255 – 298.

Weisman, M. L. (1993). The genesis of severe, long-lived bow echoes. Journal of the atmospheric sciences, 50, 645–670.

Downloads

Publicado

2016-07-20

Como Citar

Demarco, G., Anabor, V., Rizza, U., Puhales, F. S., Martins, L. G. N., Costa, F. D., & Acevedo, O. C. (2016). Análise da Propagação e Manutenção dos Vórtices gerados por um Microburst Estático e Isolado. Ciência E Natura, 38, 41–45. https://doi.org/10.5902/2179460X19849

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 3 4 5 6 7 8 9 10 > >>