Application of SARIMAX model to model and forecast the concentration of inhalable particulate matter, in Espírito Santo, Brazil
DOI:
https://doi.org/10.5902/2179460X63466Keywords:
PM10, SARIMAX, Meteorological variables, Air pollutionAbstract
This work aimed to model and forecast the average daily concentration of inhalable particulate matter (PM10) using the SARIMAX model, in the Greater Vitória Region (RGV), ES, Brazil, for the period from January 1st, 2008 to December 31th, 2018. For this, time series of PM10 concentration and meteorological parameters wind speed (V), relative humidity (U), precipitation (PP), temperature (T), solar radiation (I) and atmospheric pressure (P) were considered. These parameters were obtained from the State Environmental Institute (IEMA), being chosen the Laranjeiras, Carapina, Jardim Camburi, Enseada do Suá, Vitória (Centro), Ibes and Vila Capixaba stations to the study of prediction and forecasting. According to performance indicators, SARIMAX models, for most seasons, have been presented as good models for making predictions and forecasts of air quality in the localities. Regarding the prediction of regular air quality events, in general, the SARIMAX models stood out when compared to the SARIMA and ARMA models. Among the meteorological variables evaluated, V, U, PP and T stand out as predictor variables of PM10 concentrations and assumed a decisive role in improving the performance of the prediction models.
Downloads
References
AGIRRE-BASURKO, E.; IBARRA-BERASTEGUI, G.; MADARIAGA, I. Regression and multilayer perceptron-based models to forecast hourly O3 and NO2 leves in the Bilbao area. Environmental Modelling and Software, v. 21, p. 430-446, 2006.
AKAIKE, H. A Bayesian analysis of the minimum AIC procedure. Annals of the Institute of Statistical Mathematics, v. 30, n. 1, p. 9-14, 1978.
AKAIKE, H. Information theory and an extension of the maximum likelihood principle. In: PETROV. B.N.; CSAKI, F. (Eds.). Proceedings of the Second International Symposium on Information Theory. Budapeste: Akademiai Kiado. 1973, p. 267-281.
ARAUJO, J. A.; NEL, A. E. Particulate matter and atherosclerosis: role of particle size, composition and oxidative stress. Particle and Fibre Toxicology, v. 6, n. 24, 2009.
BERA, A.K.; JARQUE, C.M. Efficient tests for normality, homoscedasticity and serial independence of regression residuals: Monte Carlo evidence. Economics Letters, v. 7, n. 4, p. 313-318, 1981.
BOX, G.; JENKINS, G. M. Time Series Analysis: Forecasting and Control. San Francisco, CA: Holden - Day, 1970, 500 p.
BOX, G.; PIERCE, D.A. Distribution of residual autocorrelations in autorregressive integrated moving average time series models. Journal of the American Statistical Association, v. 65, n. 332, p. 1509 1526, 1970.
BOX, G., COX, D. An analysis of transformations. Journal of the Royal Statistical Society, v. 26, p. 211–252, 1964.
BOWE, B.; XIE, Y.; LI, T.; YAN, Y.; XIAN, H.; AL-ALY, Z. The 2016 global and national burden of diabetes mellitus attributable to PM2,5 air pollution. The Lancet Planetary Health, v. 2, n. 7, p. e301-e312, 2018.
CETESB - Companhia Ambiental do Estado de São Paulo. Relatório de qualidade do ar no Estado de São Paulo 2018. São Paulo: CETESB, 2019. Disponível em: https://cetesb.sp.gov.br/ar/publicacoes-relatorios/. Acesso em: 07 jul. 2021.
CONAMA – Conselho Nacional de Meio Ambiente. Resolução nº 491, de 19 de novembro de 2018. Dispõe sobre padrões de qualidade do ar. Diário Oficial da União: seção 1, Brasília, DF, p. 155. Disponível em: http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=740. Acesso em: 13 ago. 2019.
DICKEY, D. A.; FULLER, W. A. Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica, Chicago, v. 49, p. 1057-1072, 1981.
ECOSOFT – Ecosoft Consultoria e Softwares Ambientais. Inventário de emissões atmosféricas da Região da Grande Vitória: ano base – 2015. Vitória, 2019. Disponível em: https://iema.es.gov.br/qualidadedoar/inventariodefontes/2015. Acesso em: 24 ago. 2019.
ESPÍRITO SANTO (Estado). Decreto nº 3463-R, de 16 de dezembro de 2013. Estabelece novos padrões de qualidade do ar e dá providências correlatas. Diário Oficial do Estado do Espírito Santo, Vitória, ES, p. 9-11, 17 dez. 2013. Disponível em: https://iema.es.gov.br/Media/iema/CQAI/Documentos/DECRETO_N%C2%BA_3463_2013.pdf. Acesso em: 13 ago. 2019.
FIORDELISI, A.; PISCITELLI, P.; TRIMARCO, B.; COSCIONI, E.; IACCARINO, G.; SORRIENTO, D. The mechanisms of air pollution and particulate matter in cardiovascular diseases. Heart Failure Reviews, v. 22, p. 337–347, 2017.
FREITAS, C. U.; LEON, A. P.; JUNGER, W. GOUVEIA, N. Air pollution and its impacts on health in Vitoria, Espirito Santo, Brazil. Revista de Saúde Pública, v. 50, n. 4, p. 1-9, 2016.
GOMES, K.S. Modelagem INAR(p) para a previsão de índices de qualidade do ar. 71 f. Dissertação (Mestrado em Engenharia Ambiental) – Programa de Pós-Graduação em Engenharia Ambiental, Centro Tecnológico, Universidade Federal do Espírito Santo, Vitória, 2009.
GOUVEIA, N.; MENDONÇA, G. A. e S.; LEON, A. P.; CORREIA, J. E. M.; JUNGER, W. L.; FREITAS, C. U.; DAUMAS, R. P.; MARTINS, L. C.; GIUSSEPE, L.; CONCEIÇÃO, G. M.S.; MANERICH, A.; CUNHA-CRUZ, J. Poluição do ar e efeitos na saúde nas populações de duas grandes metrópoles brasileiras. Epidemiologia e Serviços de Saúde, v. 12, p. 29-40, 2003.
GOCHEVA-ILIEVA, S.; IVANOV, A.; ILIEV, I. Exploring key air pollutants and forecasting particulate matter PM10 by a two-step SARIMA approach. In: Aip Conference Proceedings. AIP Publishing, 2019, p. 1-10.
GRIPA, W.R.; REISEN, V.A.; FAJARDO, F.A.; REIS JUNIOR, N.C. Análise de predição e previsão das concentrações de material particulado inalável (PM10) na cidade de Cariacica, ES. Revista Brasileira de Estatística, v. 73, n. 237, p. 37-57, 2012.
IBGE – Instituto Brasileiro de Geografia e Estatística. Estimativa da população. 2019. Disponível em: https://www.ibge.gov.br/estatisticas/sociais/populacao/9103-estimativas-de-populacao.html. Acesso em: 15 out. 2019.
IEMA – Instituto Estadual de Meio Ambiente e Recursos Hídricos do Estado do Espírito Santo, Relatório da qualidade do ar da Região da Grande Vitória – 2016. Vitória. 2018. Disponível em: https://iema.es.gov.br/Media/iema/CQAI/Relatorios_anuais/Relat%C3%B3rio_Anual_de_Qualidade_do_Ar_2016.pdf. Acesso em: 03 mar. 2019.
JUNGER, W.L.; LEON, A.P. Imputation of missing data in time series for air pollutants. Atmospheric Environment, v. 102, p. 96-104, 2015.
JUNGER, W.L.; LEON, A.P. mstdi: Multivariate Time Series Data Imputation. R package version 0.3.5, 2018. Disponível em: https://CRAN.R-project.org/package=mtsdi. Acesso em: 01 maio 2020.
KÖPPEN, W. Versuch einer klassifikation der klimate, vorzugsweise nach ihren beziehungen zur pflanzenweltl. Geogr Zeitschr, v. 6, p. 596–611, 1900.
LEITE, R. C. M.; GUIMARÃES, E. C.; LIMA, E. A. P.; BARROZO, M. A. S.; TAVARES, M. Utilização de regressão logística simples na verificação da qualidade do ar atmosférico de Uberlândia. Engenharia Sanitária e Ambiental, v. 16, n.1, p. 175-180, 2011.
LIRA, T. S. Modelagem e previsão da qualidade do ar na cidade de Urbelândia – MG. 180 f. Tese (Doutorado em Engenharia Química) - Programa de Pós-graduação em Engenharia Química, Universidade Federal de Uberlândia, Uberlândia, 2009.
LIU, P. W.G.; JOHNSON, R. Forecasting peak daily ozone levels: part 2. A regression with time series errors model having a principal component trigger to forecast 1999 and 2002 ozone levels. Journal of the Air & Waste Management Association, v. 52, n. 9, p.1064-1074, 2002.
LIU, P.W.G.; JOHNSON, R. Forecasting peak daily ozone levels: part 2. A regression with time series errors model having a principal component trigger to forecast 1999 and 2002 ozone levels. Journal of the Air & Waste Management Association, v. 53, n. 12, p.1472-1489, 2003.
LJUNG, G.M.; BOX, G.E.P. On a measure of lack of fit in time series models. Biometrika, v. 65, n. 2, p. 297-303, 1978.
LYRA, G.B.; ODA-SOUZA, M.; VIOLA, D.N. Modelos lineares aplicados à estimativa da concentração do material particulado (PM10) na cidade do Rio de Janeiro, RJ. Revista Brasileira de Meteorologia, v. 26, n. 3, p. 392-400, 2011.
MEMARIANFARD, M.; HATAMI, A. M. Artificial neural network forecast application for fine particulate matter concentration using meteorological data. Global Journal of Environmental Science and Management, v. 3, n. 11, p. 333-340, 2017.
MONTE, E. Z.; ALBUQUERQUE, T. T. A.; REISEN, V. A. Previsão da concentração de ozônio na Região da Grande Vitória, ES, Brasil, utilizando o modelo ARMAX-GARCH. Revista Brasileira de Meteorologia, v. 30, n. 3, p. 285-294, 2015.
MOREIRA, D. M.; TIRABASSI, T.; MORAES, M. R. Meteorologia e poluição atmosférica. Ambiente e Sociedade, v. 11, n. 1, p. 1-13, 2008.
MORETTIN, P. A.; TOLOI, C. M. C. Análise de séries temporais. 2 ed. São Paulo: Edgard Blücher, 2006.
NASCIMENTO, L. F. C.; PEREIRA, L. A. P.; BRAGA, A. L. F.; MÓDOLO, M. C. C.; CARVALHO JUNIOR, J. A. Efeitos da poluição atmosférica na saúde infantil em São José dos Campos, SP. Revista de Saúde Pública, v. 40, p. 77- 82, 2006.
NG, K. Y.; AWANG, N. Multiple linear regression and regression with time series error models in forecasting PM10 concentrations in Peninsular Malaysia. Environmental Monitoring and Assessment, v. 190, n. 2, p. 1-11, 2018.
PEREZ, P.; REYES, J. An integrated neural network model for PM10 forecasting. Atmospheric Environment, v. 40, p. 2845–2851, 2006.
PINTO, W. P.; REISEN, V. A.; MONTE, E. Z. Previsão da concentração de material particulado inalável, na Região da Grande Vitória, ES, Brasil, utilizando o modelo SARIMAX. Engenharia Sanitária e Ambiental, v. 23, n. 2, p. 307-318, 2018.
R CORE TEAM (2019). R: A language and environment for statistical computing, R Foundation for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2019. Disponível em: https://www.R-project.org/.
RAZ, R.; ROBERTS, A. L.; LYALL, K.; HART, J. E.; JUST, A. C.; LADEN, F.; WEISSKOPF, M. G. Autism spectrum disorder and particulate matter air pollution before, during, and after pregnancy: a nested case-control analysis within the Nurses’ Health Study II cohort. Environmental Health Perspectives, v.123, p. 264-270, 2015.
REISEN, V.A.; SARNAGLIA, A.J.Q.; REIS JR, N.C.; LÉVY-LEDUC, C. SANTOS, J.M. Modeling and forecasting daily average PM10 concentrations by a seasonal long-memory model with volatility. Environmental Modelling & Software, v. 51, p. 286-295, 2014.
RYAN, W. F. Forecasting severe ozone episodes in the Baltimore metropolitan area. Atmospheric Environment, v. 29, n. 17, p. 2387-2398, 1995.
SANTIAGO, A.; PRADO, R. J.; FILHO, P. M.; ALONSO, R. V. Caracterização do material particulado suspenso no ar de Cuiabá-MT no período de queimadas. Revista Matéria, v. 20, p. 273-283, 2015.
SANTOS, T. C.; REBOITA, M. S.; CARVALHO, V. S. B. Investigação da Relação entre Variáveis Atmosféricas e a Concentração de MP10 E O3 no Estado de São Paulo. Revista Brasileira de Meteorologia, v. 33, p. 631-645, 2018.
SCHWARZ, G. Estimating the dimension of a model. Ann. Stat., Haward, v.6, p.461-464, 1978.
SHAPIRO, S.S.; WILK, M.B. An analysis of variance test for normality (complete samples). Biometrika, v. 52, n. 3-4, p. 591-611, 1965.
SNEDECOR, W.; COCHRAN, W. G. Statistical Methods. 8 ed., Ames: Iowa State University Press, 1989.
SOUZA, J. B.D.; REISEN, V. A.; SANTOS, J.M.; FRANCO, G.C. Componentes principais e modelagem linear generalizada na associação entre atendimento hospitalar e poluição do ar. Revista de Saúde Pública, v. 48, n. 3, p. 451-458, 2014.
VAGROPOULOS, S. I.; VAGROPOULOS, S. I.; CHOULIARAS, G. I.; KARDAKOS, E. G.; SIMOGLOU, C. K. BAKIRTZIS, A. G. Comparison of SARIMAX, SARIMA, modified SARIMA and ANN-based models for short-term PV generation forecasting. In: 2016 Ieee International Energy Conference (Energycon). IEEE, Bélgica, 2016.
WEI, W. Time Series Analysis: Univariate and Multivariate Methods. Nova York: Addison Wesley, 2006.
WHO – World Health Organization. WHO air quality guidelines global update 2005. 2005. Disponível em: http://www.euro.who.int/__data/assets/pdf_file/0008/147851/E87950.pdf. Acesso em: 13 ago. 2019.
WUERTZ, D.; SETZ, T.; CHALABI, Y. fBasics: Rmetrics - Markets and Basic Statistics. R package version 3042.89.1, 2020. Disponível em: https://CRAN.R-project.org/package=fBasics. Acesso em: 01 maio 2020.
YAP, J.; NG, Y.; YEO, K. K.; SAHLÉN, A.; LAM, C. S. P.; LEE, V.; MA, S. Particulate air pollution on cardiovascular mortality in the tropics: impact on the elderly. Environmental Health, v. 18, p. 34, 2019.
ZHANG, X.; CHEN, X.; ZHANG, X. The impact of exposure to air pollution on cognitive performance. Proceedings of the National Academy of Sciences, v. 115, p. 9193-9197, 2018.
ZHANG, Z.; WANG, J.; HART, J. E.; LADEN, F.; ZHAO, C.; LI, T.; ZHEN, P.; LI, D.; YE, Z.; CHEN, K. National scale spatiotemporal land-use regression model for PM2, 5, PM10 and NO2 concentration in China. Atmospheric Environment, v. 192, p. 48-54, 2018.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Ciência e Natura
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.